Inverse Problems in Geometry and Partial Differential Equations
几何反问题和偏微分方程
基本信息
- 批准号:0408419
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0408419Title: Inverse problems in geometry and partial differential equationsPI: Peter A. Perry, University of KentuckyABSTRACTThis project involves inverse spectral and scattering theory in three areasof mathematical investigation: (1) the spectral theory of two-stepnilpotent groups and compact nilmanifolds, (2) the inverse resonance problem forexterior domains and scattering manifolds, and (3) inverse scattering forsingular potentials with applications to nonlinear dispersive equations.Two-step nilpotent lie groups play an important role in pure mathematics as models of sub-Riemannian geometry and as a rich source of examples ofmanifolds with identical Laplace spectra but distinct geometries; adetailed investigation of the trace formula for these manifolds will becarried out using analysis on nilpotent Lie groups. Resonances arediscrete scattering data for non-compact manifolds analogous to theeigenvalues of the Laplacian on a compact manifold; the inverse resonanceproblem will be investigated in the contexts of conformal andasymptotically flat geometries, and invariants such as the determinant willbe studied. Nonlinear dispersive equations with singular initial data maybe viewed, via the inverse scattering method, as linearized flows for thescattering data of a very singular potential. We hope to extend the inversescattering picture for the KdV and mKdV equations to such singular data andobtain greater insight into these dynamical systems--by constructing theflow on Hilbert spaces of initial data which are singular but very naturalfrom a dynamical point of view. Inverse spectral theory is the mathematical discipline thatunderlies important applications of mathematics to medical imaging,geophysical prospection, non-destructive testing, and many other areas.In these applications, properties of a physicalsystem (a human body, the earth, or an industrial material) are deduced from its response to externally imposed stimuli (electromagneticradiation, seismic waves, or ultrasound). The properties deduced may loosely be described as the "geometry" of the system and its response to external stimuli the "spectral data" (or "normalmodes"). A deep result of the study of completely integrable systems is that certain physical phenomena, such as the propagation of waves inshallow water, can be solved using an associated inverse spectral problem.Thus advances in inverse spectral theory lead to a better understanding ofhow such nonlinear waves propagate. The impact of this project will be twofold: first, it will elucidate, by studying carefully chosen geometric contexts, the relation between speectrum and geometry. Secondly, it will deepen our understanding of nonlinear dispersive waves by extending tools of inverse scattering theory to study nonlinear wave propagation with very singular waves.
这个项目涉及数学研究的三个领域的逆谱和散射理论:(1)两步幂零群和紧零流形的谱理论,(2)前域和散射流形的逆共振问题,以及(3)奇异势的逆散射应用于非线性色散方程。两步幂零李群在纯数学中起着重要的作用,作为次黎曼几何的模型和具有相同拉普拉斯谱但不同几何的流形的丰富的例子;利用对幂零李群的分析,对这些流形的迹公式进行了详细的研究。共振是非紧致流形的离散散射数据,类似于紧致流形上拉普拉斯的特征值;反共振问题将在共形和渐近平坦几何的背景下研究,不变量,如行列式将被研究。利用逆散射方法,将具有奇异初值的非线性色散方程看作是一个非常奇异势的散射数据的线性化流动。我们希望将KdV方程和mKdV方程的逆散射图像推广到这样的奇异数据,并通过在Hilbert空间上构造初始数据的流来更好地了解这些动力系统--从动力学的观点来看,这些初始数据是奇异的,但非常自然。逆谱理论是一门数学学科,它为医学成像、地球物理勘探、无损检测和许多其他领域的重要数学应用奠定了基础。在这些应用中,物理系统(人体、地球或工业材料)的性质是根据其对外界刺激(电磁辐射、地震波或超声波)的反应而推断出来的。所推导的性质可以粗略地描述为系统的“几何形状”及其对外部刺激的响应,即“光谱数据”(或“正常模式”)。完全可积系统研究的一个深刻结果是,某些物理现象,如浅水中的波的传播,可以用相关的逆谱问题来解决。因此,逆谱理论的进步导致了对这种非线性波如何传播的更好的理解。这个项目的影响将是双重的:首先,它将通过研究精心选择的几何背景来阐明频谱和几何之间的关系。其次,通过扩展逆散射理论的工具来研究具有非常奇异的波的非线性波的传播,将加深我们对非线性色散波的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Perry其他文献
The Management of University-Industry Collaborations Involving Empirical Studies of Software Enginee
涉及软件工程实证研究的产学合作管理
- DOI:
10.1007/978-1-84800-044-5_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Lethbridge;Steve Lyon;Peter Perry - 通讯作者:
Peter Perry
Isoscattering deformations for complete manifolds of negative curvature
- DOI:
10.1007/bf02922135 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Peter Perry;Dorothee Schueth - 通讯作者:
Dorothee Schueth
Some examples inL p spectral geometry
- DOI:
10.1007/bf02921315 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Brooks;Peter Perry;Peter Petersen V - 通讯作者:
Peter Petersen V
Pastoralism and politics: reinterpreting contests for territory in Auckland Province, New Zealand, 1853–1864
- DOI:
10.1016/j.jhg.2007.10.001 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Vaughan Wood;Tom Brooking;Peter Perry - 通讯作者:
Peter Perry
Closed Geodesics in Homology Classes for Convex Co-Compact Hyperbolic Manifolds
- DOI:
10.1023/a:1016226616826 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Jeffrey McGowan;Peter Perry - 通讯作者:
Peter Perry
Peter Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Perry', 18)}}的其他基金
Conference and Workshop: Scattering and Inverse-Scattering in Multi-Dimensions, May 16-23, 2014
会议和研讨会:多维散射和逆散射,2014 年 5 月 16-23 日
- 批准号:
1408891 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Inverse Scattering and Partial Differential Equations
逆散射和偏微分方程
- 批准号:
1208778 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Problems in Geometry and Partial Differential Equations
几何和偏微分方程中的谱问题
- 批准号:
0710477 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Inverse Spectral Geometry, June 20-28, 2002, Lexington, Kentucky
逆谱几何会议,2002 年 6 月 20-28 日,肯塔基州列克星敦
- 批准号:
0207125 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Geometry of Non-Compact Domains and Riemannian Manifolds
非紧域和黎曼流形的谱几何
- 批准号:
0100829 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
- 批准号:
9707051 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates - Inverse Problems: Mathematics and Engineering
数学科学:本科生研究经历-反问题:数学与工程
- 批准号:
9424012 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry and Inverse Problems
数学科学:谱几何和反问题
- 批准号:
9203529 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
- 批准号:
21K03264 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
CIF: Small: Combinatorial Inverse Problems in Distance Geometry
CIF:小:距离几何中的组合反问题
- 批准号:
1817577 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
- 批准号:
18H01126 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Learning Geometry for Inverse Problems in Imaging
学习成像反问题的几何
- 批准号:
1821342 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual