Spectral Geometry of Non-Compact Domains and Riemannian Manifolds
非紧域和黎曼流形的谱几何
基本信息
- 批准号:0100829
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS - 0100829The principal investigator will study the spectral geometry of non-compactdomains and Riemannian manifolds in order to elucidate the geometriccontent of scattering poles. First, the PI will continue his study of thespectral geometry of hyperbolic manifolds and their perturbations. He willstudy resonances as functions on the deformation space of the underlyingdiscrete group, and define and analyze a determinant of the Laplacian.Secondly, the PI will study scattering theory for the wave equation ontwo-step nilpotent Lie groups and their quotients by discrete subgroups.New parametrices or the wave equation on the Heisenberg and Heisenberg-typegroups will be derived, and trace formula for certain quotients obtained.Riemannian submersion techniques of Gordon, Wilson, and others will be usedto obtain pairs and families of `isoscattering' manifolds which will helpdetermine the limits of geometric information which may be deduced from aknowledge of the scattering poles. Thirdly, the PI will study theisoscattering problem for exterior domains in Euclidean space.The fundamental problem of spectral geometry is to elucidate thegeometric content of the Laplace spectrum on a Riemannian manifold.For so-called scattering manifolds, the eigenvalues of the Laplaciantogether with scattering resonances constitute the spectral data for themanifold. Elucidating the geometric content of such spectral dataadvances our understanding of quantization, produces new analytic toolsfor the study of geometric objects, and provides insight into inverseproblems of a more `applied' nature where the eigenvalues and scatteringpoles are measurable quantities. The present work aims to begin withgeometrically natural examples where techniques of Lie theory, automorphicfunctions, and harmonic analysis may be used, and progress to harderproblems such as target identification by radar where such techniques are not available but the underlying mathematical problems are very similar.
摘要DMS -0100829主要研究者将研究非紧域和黎曼流形的谱几何,以阐明散射极的几何内容。首先,PI将继续研究双曲流形的谱几何及其扰动。他将研究作为变形空间上的函数的共振,定义并分析拉普拉斯行列式。其次,PI将研究两步幂零李群上的波动方程及其离散子群的子群的散射理论,导出Heisenberg和Heisenberg型群上的波动方程的新参数,Gordon,Wilson,而其他人将被用来获得对和家庭的`这将有助于确定几何信息的限制,可以从散射极点的知识推导出来。 谱几何的基本问题是阐明黎曼流形上的拉普拉斯谱的几何内容,对于所谓的散射流形,拉普拉斯的本征值与散射共振一起构成了流形的谱数据。 阐明这种光谱数据的几何内容推进了我们对量子化的理解,产生了新的分析工具,用于研究几何对象,并提供了深入了解逆问题的一个更“应用”的性质,其中的特征值和scatteringpoles是可测量的数量。目前的工作的目的是开始几何自然的例子,李理论,automorphicfunctions,和谐波分析的技术可能会使用,并进展到hardproblems,如目标识别雷达在这种技术是不可用的,但基本的数学问题是非常相似的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Perry其他文献
The Management of University-Industry Collaborations Involving Empirical Studies of Software Enginee
涉及软件工程实证研究的产学合作管理
- DOI:
10.1007/978-1-84800-044-5_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Lethbridge;Steve Lyon;Peter Perry - 通讯作者:
Peter Perry
Isoscattering deformations for complete manifolds of negative curvature
- DOI:
10.1007/bf02922135 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Peter Perry;Dorothee Schueth - 通讯作者:
Dorothee Schueth
Some examples inL p spectral geometry
- DOI:
10.1007/bf02921315 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Brooks;Peter Perry;Peter Petersen V - 通讯作者:
Peter Petersen V
Pastoralism and politics: reinterpreting contests for territory in Auckland Province, New Zealand, 1853–1864
- DOI:
10.1016/j.jhg.2007.10.001 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:
- 作者:
Vaughan Wood;Tom Brooking;Peter Perry - 通讯作者:
Peter Perry
Closed Geodesics in Homology Classes for Convex Co-Compact Hyperbolic Manifolds
- DOI:
10.1023/a:1016226616826 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Jeffrey McGowan;Peter Perry - 通讯作者:
Peter Perry
Peter Perry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Perry', 18)}}的其他基金
Conference and Workshop: Scattering and Inverse-Scattering in Multi-Dimensions, May 16-23, 2014
会议和研讨会:多维散射和逆散射,2014 年 5 月 16-23 日
- 批准号:
1408891 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Inverse Scattering and Partial Differential Equations
逆散射和偏微分方程
- 批准号:
1208778 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Spectral Problems in Geometry and Partial Differential Equations
几何和偏微分方程中的谱问题
- 批准号:
0710477 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Inverse Problems in Geometry and Partial Differential Equations
几何反问题和偏微分方程
- 批准号:
0408419 - 财政年份:2004
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Conference on Inverse Spectral Geometry, June 20-28, 2002, Lexington, Kentucky
逆谱几何会议,2002 年 6 月 20-28 日,肯塔基州列克星敦
- 批准号:
0207125 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Geometry of Compact Riemannian Manifolds and Kleinian Groups
数学科学:紧致黎曼流形和克莱因群的谱几何
- 批准号:
9707051 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates - Inverse Problems: Mathematics and Engineering
数学科学:本科生研究经历-反问题:数学与工程
- 批准号:
9424012 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry and Inverse Problems
数学科学:谱几何和反问题
- 批准号:
9203529 - 财政年份:1992
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
- 批准号:
2890480 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship
Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
- 批准号:
2886391 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
- 批准号:
2154613 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
- 批准号:
2202365 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant