Structured Additive Distributional Regression

结构化加性分布回归

基本信息

  • 批准号:
    166547046
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Regression models form one of the standard tools for empirical analyses in all scientific disciplines and in particular in economics. While usual regression specifications such as the linear model or generalized linear models aim at describing the expectation of a response conditional on covariates, recent interest has shifted towards models that allow to analyse more general properties of the distribution of a response (we will refer to this as distributional regression in the following). This comprises completely distribution free approaches such as quantile and expectile regression as well as flexible parametric approaches for location, scale and shape. The increasing availability of complex covariate information also induces a requirement for similarly complex predictor specifications such as nonlinear and spatial effects in the context of distributional regression.This project extends different classes of distributional regression and develops corresponding inferential techniques. The model classes considered comprise different versions of quantile and expectile regression, modal regression and regression models for location, scale and shape. The developed methods will furthermore be employed in the different areas of application for empirical analyses.
回归模型是所有科学领域,特别是经济学领域进行实证分析的标准工具之一。虽然通常的回归规范,如线性模型或广义线性模型,旨在描述以协变量为条件的响应的预期,但最近的兴趣已转向允许分析响应分布的更一般性质的模型(我们将在下文中将其称为分布回归)。这包括完全无分布的方法,如分位数和预期回归,以及位置、规模和形状的灵活参数方法。复杂协变量信息的增加也导致了对类似复杂预测指标的需求,例如分布回归中的非线性和空间效应。本项目扩展了不同类型的分布回归,并开发了相应的推理技术。所考虑的模型类别包括不同版本的分位数和预期回归、模式回归和位置、规模和形状的回归模型。所开发的方法还将用于不同的应用领域进行实证分析。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling Hospital Admission and Length of Stay by Means of Generalised Count Data Models
通过广义计数数据模型对入院和住院时间进行建模
Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach
  • DOI:
    10.1007/s11222-015-9573-6
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    N. Klein;T. Kneib
  • 通讯作者:
    N. Klein;T. Kneib
Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression
结构化加性分布回归中方差参数的尺度相关先验
  • DOI:
    10.1214/15-ba983
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
  • 通讯作者:
Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data
BAYESIAN STRUCTURED ADDITIVE DISTRIBUTIONAL REGRESSION WITH AN APPLICATION TO REGIONAL INCOME INEQUALITY IN GERMANY
  • DOI:
    10.1214/15-aoas823
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Klein, Nadja;Kneib, Thomas;Sohn, Alexander
  • 通讯作者:
    Sohn, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Kneib其他文献

Professor Dr. Thomas Kneib的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Kneib', 18)}}的其他基金

Semiparametric Regression Models for Location, Scale and Shape
位置、尺度和形状的半参数回归模型
  • 批准号:
    397587368
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
LIESEL - A Software Framework for Bayesian Semiparametric Distributional Regression
LIESEL - 贝叶斯半参数分布回归的软件框架
  • 批准号:
    443179956
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic Variational Inference for Latent Gaussian Models
潜在高斯模型的随机变分推理
  • 批准号:
    527917760
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Studentship
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Powder Manufacturing Facility for Additive Manufacturing
用于增材制造的粉末制造设施
  • 批准号:
    LE240100120
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
  • 批准号:
    2340090
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
  • 批准号:
    2400010
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
  • 批准号:
    2327252
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了