Semiparametric Regression Models for Location, Scale and Shape
位置、尺度和形状的半参数回归模型
基本信息
- 批准号:397587368
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Generalised additive models for location, scale and shape (GAMLSS) allow one to relate not only the conditional expectation of a response variable in a regression context to potential explanatory variables but all parameters of the conditional distribution of the response. As a consequence, flexible regression relations beyond the mean can be detected such that more realistic and more informative regression specifications are obtained. In this project, different semiparametric extensions of GAMLSS will be developed and applied in complex case studies. The first part of the project will consider the analysis of time series data with regime switching based on Markov switching and smooth transition models combined with the flexibility of GAMLSS along the specific application of operational losses in the banking industry. The second part will deal with efficiency analysis based on stochastic frontier analysis which will be embedded in the context of GAMLSS to allow for a multivariate formulation with multiple output equations. A third model class considers censored GAMLSS specifications where only incomplete information is available. The most typical example are duration times, e.g. for labour market histories of individuals, but we will also consider censored data on income from observational studies. To increase the general applicability of GAMLSS, we will in addition study difference flexible extensions of the predictor structure (regularization and variable selection approaches, complex interaction types, functional explanatory variables), develop variable importance measures and investigate novel ways of interpreting and visualizing GAMLSS estimates. In summary, this project will provide important contributions to increase the applicability of GAMLSS in challenging economic applications. It will therefore increase the general awareness of such methods such that GAMLSS will turn into a standard tool for applied economists interested in regression effects beyond the mean.
位置、规模和形状的广义加性模型(GAMLSS)不仅可以将回归环境中响应变量的条件期望与潜在的解释变量联系起来,还可以将响应条件分布的所有参数联系起来。因此,可以检测到超出平均值的灵活回归关系,从而获得更现实和更有信息的回归规范。在这个项目中,GAMLSS的不同半参数扩展将被开发并应用于复杂的案例研究。项目的第一部分将考虑基于马尔可夫切换和平滑过渡模型的状态切换的时间序列数据分析,结合GAMLSS的灵活性,以及银行业运营损失的具体应用。第二部分将处理基于随机前沿分析的效率分析,该分析将嵌入在GAMLSS的背景下,以允许具有多个输出方程的多元公式。第三类模型考虑经过审查的GAMLSS规范,其中只有不完整的信息可用。最典型的例子是持续时间,例如个人的劳动力市场历史,但我们也将考虑观察性研究中关于收入的审查数据。为了提高GAMLSS的普遍适用性,我们还将研究预测器结构的不同灵活扩展(正则化和变量选择方法、复杂交互类型、功能解释变量),开发变量重要性度量,并研究解释和可视化GAMLSS估计的新方法。总之,该项目将为提高GAMLSS在具有挑战性的经济应用中的适用性做出重要贡献。因此,它将提高对这些方法的普遍认识,使GAMLSS将成为对均值以外的回归效应感兴趣的应用经济学家的标准工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Kneib其他文献
Professor Dr. Thomas Kneib的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Kneib', 18)}}的其他基金
Structured Additive Distributional Regression
结构化加性分布回归
- 批准号:
166547046 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
LIESEL - A Software Framework for Bayesian Semiparametric Distributional Regression
LIESEL - 贝叶斯半参数分布回归的软件框架
- 批准号:
443179956 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Stochastic Variational Inference for Latent Gaussian Models
潜在高斯模型的随机变分推理
- 批准号:
527917760 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of incomplete data in quantile regression and semiparametric models
分位数回归和半参数模型中不完整数据的分析
- 批准号:
1007420 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Estimation of Quantile and other Nonparametric Statistical Functionals in Non- and Semiparametric Regression and Autoregression Models
非参数和半参数回归及自回归模型中分位数和其他非参数统计函数的估计
- 批准号:
21235440 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
CAREER: Model Selection for Semiparametric Regression Models in High Dimensional Modeling and its Oracle Properties
职业:高维建模中半参数回归模型的模型选择及其 Oracle 属性
- 批准号:
0348869 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Semiparametric Regression Models for Censored Data
职业:截尾数据的半参数回归模型
- 批准号:
0134431 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Methods for Nonparametric Classification and Regression/Supervised Learning, Inference in HMM and State Space Models and Inference in Semiparametric Models
非参数分类和回归/监督学习的自适应方法、HMM 和状态空间模型中的推理以及半参数模型中的推理
- 批准号:
0104075 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




