LIESEL - A Software Framework for Bayesian Semiparametric Distributional Regression

LIESEL - 贝叶斯半参数分布回归的软件框架

基本信息

项目摘要

LIESEL is a new software framework for research on Bayesian semiparametric distributional regression with a particular focus on modularity, extensibility, and reliability. Distributional regression has recently received considerable attention in the statistical community since it enables researchers to explore complex relations between explanatory and response variables beyond the mean, e.g. effects on distributional features such as scale, skewness, dependence, etc. LIESEL facilitates the development of statistical software in this area by bridging the gap between specialized implementations on the one and general purpose software packages for Bayesian inference on the other hand. It is both flexible enough to serve as a basis for the implementation of complex model extensions and convenient enough for quick prototyping and evaluation of statistical models and statistical inference algorithms. For this, we rely on state-of-the-art tools for all computational aspects as well as for documentation, community building, and quality assurance.LIESEL is implemented as a Python package with an R interface and provides an accessible and consistent API for the specification and estimation of distributional regression models. It is based on directed acyclic graph representations of Bayesian statistical models, which leads to a modular and comprehensible codebase. A large number of model components including non-linear, spatial, and random covariate effects, different Markov chain Monte Carlo algorithms, and other helpful tools, e.g. for model visualization and model checking, are pre-implemented in LIESEL and can be used for the development of model extensions. With LIESEL, we are contributing to the development of trustworthy statistical software, reproducible statistical research, and advances in statistical methodology by providing a well-tested and reliable basis for the implementation of model extensions and new inference algorithms.A prototype of LIESEL has been developed in the research project "Semiparametric Regression Models for Location, Scale, and Shape" and subproject "Spatio-Temporal Distributional Regression Modeling" of RTG 2300 "Enrichment of European Beech Forests with Conifers". In the proposed project, we will realize the full potential of our software framework by (i) systematically reevaluating and improving the core software components with the goal of ensuring long-term sustainability and reuse of the software, (ii) demonstrating the potential of LIESEL in several application cases conducted in collaboration with research partners, and (iii) extensively investing in dissemination and outreach activities to bring LIESEL to the attention of applied researchers. To achieve our goals, we are going to build on our considerable experience with the development of statistical software and our network of scientists that will work with the software.
LIESEL是一个新的软件框架,用于研究贝叶斯半参数分布回归,特别关注模块化,可扩展性和可靠性。分布回归最近在统计界受到了相当大的关注,因为它使研究人员能够探索解释变量和响应变量之间的复杂关系,例如对分布特征的影响,如规模,偏度,依赖性,LIESEL通过弥合专用软件和通用软件之间的差距,促进了这一领域统计软件的开发另一方面,贝叶斯推理的软件包。它既足够灵活,可以作为实现复杂模型扩展的基础,又足够方便,可以快速原型化和评估统计模型和统计推理算法。LIESEL是一个带有R接口的Python软件包,它提供了一个可访问的、一致的API,用于分布回归模型的规范和估计。它基于贝叶斯统计模型的有向无环图表示,这导致了模块化和可理解的代码库。大量的模型组件,包括非线性,空间和随机协变量效应,不同的马尔可夫链蒙特卡罗算法,以及其他有用的工具,例如用于模型可视化和模型检查,在LIESEL中预先实现,并可用于模型扩展的开发。通过LIESEL,我们为可信赖的统计软件的开发、可重复的统计研究和统计方法的进步做出了贡献,为模型扩展和新的推理算法的实施提供了经过充分测试和可靠的基础。RTG 2300“用针叶树丰富欧洲山毛榉林”的子项目“时空分布回归建模”。在拟议的项目中,我们将通过以下方式实现我们软件框架的全部潜力:(i)系统地重新评估和改进核心软件组件,以确保软件的长期可持续性和重用,(ii)在与研究伙伴合作进行的几个应用案例中展示LIESEL的潜力,以及(iii)广泛投资于传播和推广活动,使LIESEL引起应用研究人员的注意。为了实现我们的目标,我们将利用我们在开发统计软件方面的丰富经验以及我们将使用该软件的科学家网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Kneib其他文献

Professor Dr. Thomas Kneib的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Kneib', 18)}}的其他基金

Semiparametric Regression Models for Location, Scale and Shape
位置、尺度和形状的半参数回归模型
  • 批准号:
    397587368
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structured Additive Distributional Regression
结构化加性分布回归
  • 批准号:
    166547046
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic Variational Inference for Latent Gaussian Models
潜在高斯模型的随机变分推理
  • 批准号:
    527917760
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
  • 批准号:
    2348151
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
  • 批准号:
    2311207
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DASS: A Multi-level Collaborative Design Framework for Cross-sovereignty Software Accountability
DASS:跨主权软件责任的多层次协作设计框架
  • 批准号:
    2317086
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
  • 批准号:
    2311208
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/FDA: Towards an active surveillance framework to detect AI/ML-enabled Software as a Medical Device (SaMD) data and performance drift in clinical flow
NSF/FDA:建立主动监测框架,以检测支持 AI/ML 的软件即医疗设备 (SaMD) 数据和临床流程中的性能漂移
  • 批准号:
    2326034
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Safe and Efficient Framework to Continuous Integration through Repaying Self-Admitted Technical Debt in Software Development
通过偿还软件开发中自我承认的技术债务来实现持续集成的安全高效的框架
  • 批准号:
    23KJ1589
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CRII: CNS: A Hybrid Software Defined Networking-Information Centric Networking Framework for the Reuse of Computation at the Network Edge
CRII:CNS:一种混合软件定义网络-以信息为中心的网络框架,用于在网络边缘重用计算
  • 批准号:
    2306685
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
  • 批准号:
    2311206
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Comprehensive Framework for the Automatic Evaluation of the Quality of ML-based Software Systems
基于机器学习的软件系统质量自动评估的综合框架
  • 批准号:
    561420-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Collaborative Research: Elements: Software: Software Health Monitoring and Improvement Framework
协作研究:要素:软件:软件健康监控和改进框架
  • 批准号:
    2227248
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了