GOALI: Comibinatorial Methods and Micro-Scale Characterization Techniques for TBC Optimization

GOALI:TBC 优化的组合方法和微尺度表征技术

基本信息

  • 批准号:
    0413803
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

This GOALI grant from the Division of Materials Research to Johns Hopkins University is to employ combinatorial methods and micro-scale testing to elucidate the role of alloy chemistry on the martensite transformation in bond coats for thermal barrier coatings (TBCs) applied to superalloys. With this award, Professors Hemker and Zhao will be opening a new paradigm for bond coat design, and the research will promote the development of experimental tools needed to advance new materials into a variety of structural applications. This grant is motivated by the recent discovery of martensite transformation occurring in thermally cycled, platinum modified, nickel aluminide bond coats. This transformation has been shown to dramatically influence the performance of the TBC and is known to be highly dependent on alloy chemistry, which can vary as a result of element interdiffusion. The use of diffusion multiples provides a highly efficient means for clarifying the role that stoichiometry and ternary elements (e.g. Platinum, Chromium, Rhenium, Tungsten, Molybdenium, Tantalum, Cobalt and Hafnium) will have in governing martensite formation. Targeted thin film combinatorial samples of specific compositions, determined using diffusion multiples, are fabricated with inert plasma deposition and characterized with a suite of novel micro-scale characterization techniques (micro-tensile testing, nanoindentation, micro-probe spectroscopy, differential thermal analysis, X-ray diffraction and transmission electron microscopy). The results should provide a fundamental understanding of the martensite transformation that occurs in TBC bond coats and thereby provide a science-based protocol for the development of long lasting, high performance TBC coatings. The technological motivation for this research is rooted in the fact that thermal barrier coatings offer tremendous opportunities for increasing the temperature capabilities and durability of components in aircraft engines and power turbines. In addition, the scientific challenges to be addressed, namely the development of combinatorial methods and novel micro-scale characterization techniques for assessing the stability, strength and performance of multilayered coatings, have a much broader application for the development of multicomponent structural materials. This Grant Opportunities for Academic Liaison with Industry (GOALI) collaboration includes closely meshed research activities and yearly personnel exchanges, and places Johns Hopkins students and faculty in direct contact with engineers and scientists at the GE Global Research Center. This broadens the education of the JHU students by providing invaluable technological and industrial experience. The benefits to GE include the availability of unique JHU experimental expertise and the ability to focus on fundamental research in an area that is of high technological interest.
这项由材料研究部授予约翰霍普金斯大学的目标是利用组合方法和微型测试来阐明合金化学对高温合金热障涂层(TBCs)粘结涂层中马氏体转变的作用。有了这个奖项,海姆克和赵教授将开启粘合涂层设计的新范式,这项研究将促进将新材料应用于各种结构应用所需的实验工具的开发。这笔赠款的动机是最近发现在热循环、铂变质的镍铝化物粘结层中发生马氏体转变。这种转变已被证明极大地影响TBC的性能,并已知高度依赖于合金化学,而合金化学可因元素互扩散而变化。扩散倍数的使用为阐明化学计量比和三元元素(如铂、铬、Re、钨、钼、钽、钴和Hafnium)在控制马氏体形成中的作用提供了一种高效的手段。用惰性等离子体沉积法制备了特定成分的靶向薄膜组合样品,并用一套新颖的微尺度表征技术(微拉伸测试、纳米压痕、微探针光谱、差热分析、X射线衍射和透射电子显微镜)对其进行了表征。研究结果将有助于从根本上理解TBC粘结层中发生的马氏体相变,从而为开发持久、高性能的TBC涂层提供科学依据。这项研究的技术动机源于这样一个事实,即热障涂层为提高飞机发动机和动力涡轮机部件的温度能力和耐用性提供了巨大的机会。此外,需要解决的科学挑战,即组合方法和新的微尺度表征技术的发展,以评估多层涂层的稳定性、强度和性能,在多组分结构材料的开发中有更广泛的应用。这项GOALI学术联络机会(GOALI)合作包括紧密联系的研究活动和年度人员交流,并使约翰霍普金斯大学的学生和教职员工与GE全球研究中心的工程师和科学家直接接触。这通过提供宝贵的技术和工业经验,扩大了JHU学生的教育范围。通用电气的好处包括获得独特的JHU实验专业知识,以及能够专注于具有高度技术兴趣的领域的基础研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Hemker其他文献

Kevin Hemker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Hemker', 18)}}的其他基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Experimental Characterization of Deformation Mechanisms in Magnesium Rare Earth Alloys
镁稀土合金变形机制的实验表征
  • 批准号:
    1709865
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Development of Metallic MEMS Materials for Extreme Environments
目标:开发适用于极端环境的金属 MEMS 材料
  • 批准号:
    1410301
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Materials World Network: Collaborative Research: Quantifying the Role of Impurities that Control Stress-Driven Grain Growth in Nanocrystalline Metals
材料世界网络:合作研究:量化控制纳米晶金属中应力驱动晶粒生长的杂质的作用
  • 批准号:
    1008156
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Materials World Network: NSF-Germany (DFG) Materials Collaboration: LIGA Ni-base Superalloys for MEMS Applications
材料世界网络:NSF-德国 (DFG) 材料合作:用于 MEMS 应用的 LIGA 镍基高温合金
  • 批准号:
    0806753
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-Germany Materials Collaboration: High Temperature Materials for Microelectromechanical Systems
NSF-德国材料合作:用于微机电系统的高温材料
  • 批准号:
    0502669
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
TBC Bond Coat Properties and Dynamics
TBC 粘合涂层性能和动力学
  • 批准号:
    0221532
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NIRT: Uncovering Deformation Mechanisms of Nanostructured Materials
NIRT:揭示纳米结构材料的变形机制
  • 批准号:
    0210215
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Use Of Microsample Testing To Characterize and Model Bond Coat Performance and TBC Life
GOALI:使用微量样品测试来表征和模拟粘合涂层性能和 TBC 寿命
  • 批准号:
    9986752
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding and Modeling the Creep Behavior of Lamellar TiA1 Based Alloys
了解层状 TiA1 基合金的蠕变行为并对其进行建模
  • 批准号:
    9713731
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Comibinatorial evaluation of Ti-Ni based high formable shape memory alloys
Ti-Ni基高成形形状记忆合金的组合评价
  • 批准号:
    17H03143
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了