Understanding and Modeling the Creep Behavior of Lamellar TiA1 Based Alloys

了解层状 TiA1 基合金的蠕变行为并对其进行建模

基本信息

  • 批准号:
    9713731
  • 负责人:
  • 金额:
    $ 26.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-15 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

*** 9713731 Hemker Fully lamellar two phase TiAl based intermetallic alloys offer a very attractive mix of mechanical properties and are considered to be strong candidates for replacing nickel base superalloys in several structural applications involving temperatures of up to 900' C. At these temperatures, the creep performance of these alloys is of primary concern. Unfortunately, our understanding of the processes that control high temperature deformation in many advanced materials, including TiAl, is currently rather limited. The underlying creep mechanisms in these advanced alloys are often quite different from that in pure metals; the influence of steady-state creep is much smaller than it is in pure metals, and transient deformation processes (i.e.. primary and tertiary creep) have been found to dominate the creep behavior. In these cases, the Dorn description of power-law creep is no longer valid and attempts to characterize the creep behavior with activation energies and stress exponents, derived from minimum creep rates, have met with very limited success. This has profound consequences for the prediction of creep performance, because the FEM codes used for creep analysis require the input of creep laws that characterize the creep behavior of the material. Wherever possible it is desirable to have these laws based on the physical deformation mechanisms. The widely referenced Dorn description of power-law creep is based on diffusion assisted climb in recovery processes that lead to steady state creep. However, as is shown in the PI's RIA related research, in most intermetallic alloys, including TiAl , the diffusion-assisted recovery processes which lead to steady state creep in pure metals are replaced by a gradual evolution of the deformation microstructure. For this reason, the Dorn equation cannot be used to model creep in this set of alloys and it is necessary to develop an alternative set of mechanism-based creep relations for TiAl based lamellar alloys. The primary goal of this work will be to derive a fundamental set of creep laws that are based on observations of microstructural evolution as a function of creep strain. This will require a close integration of mechanics and materials and will involve work at three specific length scales: i) the microscopic deformation mechanisms will be identified and characterized by TEM observations of fully lamellar polycrystalline specimens that have been crept to various amounts of creep strain, ii) the mesoscopic effects of grain size, lamellar spacing, and lamellar orientation will be separated and characterized with single crystal and microsample creep tests, and iii) the macroscopic creep behavior of these alloys will be modeled with constitutive relations that are based on the micro-and mesoscopic measurements. The PI's experience with creep testing, TEM, and TiAl has been teamed with the co-PI's expertise in developing continuum models of multiphase materials in order to assure a bridge between the mechanics and materials issues in this study.***
*9713731 HEMKER全层状两相TiAl基金属间化合物合金具有非常吸引人的机械性能组合,被认为是在温度高达900℃的几种结构应用中取代镍基高温合金的有力候选者。在这些温度下,这些合金的蠕变性能是首要问题。不幸的是,我们对包括TiAl在内的许多先进材料的高温变形控制过程的了解目前相当有限。这些先进合金的基本蠕变机制往往与纯金属的蠕变机制有很大不同;稳态蠕变的影响比纯金属小得多,而瞬时变形过程(即,...一次蠕变和三次蠕变)已被发现主导蠕变行为。在这些情况下,Dorn对幂定律蠕变的描述不再有效,用最小蠕变速率得出的激活能和应力指数来表征蠕变行为的尝试取得了非常有限的成功。这对蠕变性能的预测有着深远的影响,因为用于蠕变分析的有限元程序要求输入表征材料蠕变行为的蠕变定律。只要有可能,这些定律最好是以物理变形机制为基础的。被广泛引用的幂定律蠕变的Dorn描述是基于导致稳态蠕变的恢复过程中的扩散辅助攀移。然而,正如PI的RIA相关研究表明,在包括TiAl在内的大多数金属间化合物合金中,导致纯金属稳态蠕变的扩散辅助恢复过程被变形组织的逐渐演变所取代。因此,Dorn方程不能用来模拟这组合金的蠕变,因此有必要为TiAl基片层合金发展一套基于机制的蠕变关系。这项工作的主要目标将是推导出一套基本的蠕变定律,这些定律是基于对作为蠕变应变函数的微观结构演变的观察。这将需要力学和材料的紧密结合,并将涉及三个特定长度尺度的工作:i)将通过对蠕变到不同蠕变应变的全片层多晶样品的透射电子显微镜观察来识别和表征微观变形机制;ii)将通过单晶和微样品蠕变试验来分离和表征晶粒度、片层间距和片层取向的介观效应;以及iii)将使用基于微观和细观测量的本构关系来模拟这些合金的宏观蠕变行为。PI在蠕变测试、透射电子显微镜和TiAl方面的经验与共同PI在开发多相材料的连续介质模型方面的专业知识相结合,以确保在本研究中的力学和材料问题之间架起一座桥梁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Hemker其他文献

Kevin Hemker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Hemker', 18)}}的其他基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Experimental Characterization of Deformation Mechanisms in Magnesium Rare Earth Alloys
镁稀土合金变形机制的实验表征
  • 批准号:
    1709865
  • 财政年份:
    2017
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
GOALI: Development of Metallic MEMS Materials for Extreme Environments
目标:开发适用于极端环境的金属 MEMS 材料
  • 批准号:
    1410301
  • 财政年份:
    2014
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Materials World Network: Collaborative Research: Quantifying the Role of Impurities that Control Stress-Driven Grain Growth in Nanocrystalline Metals
材料世界网络:合作研究:量化控制纳米晶金属中应力驱动晶粒生长的杂质的作用
  • 批准号:
    1008156
  • 财政年份:
    2011
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
Materials World Network: NSF-Germany (DFG) Materials Collaboration: LIGA Ni-base Superalloys for MEMS Applications
材料世界网络:NSF-德国 (DFG) 材料合作:用于 MEMS 应用的 LIGA 镍基高温合金
  • 批准号:
    0806753
  • 财政年份:
    2008
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
NSF-Germany Materials Collaboration: High Temperature Materials for Microelectromechanical Systems
NSF-德国材料合作:用于微机电系统的高温材料
  • 批准号:
    0502669
  • 财政年份:
    2005
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
GOALI: Comibinatorial Methods and Micro-Scale Characterization Techniques for TBC Optimization
GOALI:TBC 优化的组合方法和微尺度表征技术
  • 批准号:
    0413803
  • 财政年份:
    2004
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
TBC Bond Coat Properties and Dynamics
TBC 粘合涂层性能和动力学
  • 批准号:
    0221532
  • 财政年份:
    2003
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
NIRT: Uncovering Deformation Mechanisms of Nanostructured Materials
NIRT:揭示纳米结构材料的变形机制
  • 批准号:
    0210215
  • 财政年份:
    2002
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
GOALI: Use Of Microsample Testing To Characterize and Model Bond Coat Performance and TBC Life
GOALI:使用微量样品测试来表征和模拟粘合涂层性能和 TBC 寿命
  • 批准号:
    9986752
  • 财政年份:
    2000
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
  • 批准号:
    2340174
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Catalyst Project: Microstructural Evolution and Constitutive Modeling of Creep and Elevated Temperature Quasi-Static Tensile Deformation in Additively Manufactured Grade 91 Alloy
催化剂项目:增材制造 91 级合金蠕变和高温准静态拉伸变形的微观结构演化和本构建模
  • 批准号:
    2200613
  • 财政年份:
    2022
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Modeling Creep of Short Fiber Reinforced Concrete
短纤维混凝土的徐变建模
  • 批准号:
    422068083
  • 财政年份:
    2019
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Research Fellowships
Creep modeling of precision adhesive joints in opto-electronic devices
光电器件中精密粘合接头的蠕变建模
  • 批准号:
    463690-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Collaborative Research and Development Grants
Creep modeling of precision adhesive joints in opto-electronic devices
光电器件中精密粘合接头的蠕变建模
  • 批准号:
    463690-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling and optimization of profile creep-feed grinding with cubic boron nitride
立方氮化硼仿形缓进给磨削的建模和优化
  • 批准号:
    217203-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanical Erosion of Frictionally Locked Fault Patches Due to Creep: ObservationalEvidence and Modeling
蠕变引起的摩擦锁定断层块的机械侵蚀:观测证据和建模
  • 批准号:
    1214900
  • 财政年份:
    2012
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
Modeling and optimization of profile creep-feed grinding with cubic boron nitride
立方氮化硼仿形缓进给磨削的建模和优化
  • 批准号:
    217203-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Discovery Grants Program - Individual
Prediction of the constitutive equation for uniaxial creep of power-law materials through instrumented indentation testing and modeling
通过仪器化压痕测试和建模预测幂律材料单轴蠕变本构方程
  • 批准号:
    22560660
  • 财政年份:
    2010
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling and optimization of profile creep-feed grinding with cubic boron nitride
立方氮化硼仿形缓进给磨削的建模和优化
  • 批准号:
    217203-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了