COMET: An Efficient and Scalable Trajectory Data Management System

COMET:高效且可扩展的轨迹数据管理系统

基本信息

项目摘要

The use of location-aware devices, such as cell phones with GPS or objects with RFID (Radio Frequency Identification) tags, is exploding in a number of emerging spatio-temporal applications. Traditional database management systems (DBMS) are not designed to handle such applications, especially if the application requires managing a large number of moving objects. The goal of the COMET (Continuous Management of Evolving Trajectories) project is to design, implement, and build a database management system for managing large repositories of continuously evolving trajectories data sets. Since in these environments location updates are issued continually, the DBMS must support extremely efficient methods for dealing with updates. In addition, to allow querying on previous locations of the moving objects, the DBMS must keep track of past trajectories. As time passes these trajectories continue to increase in length, and with large and often increasing number of moving objects, the database size can increase dramatically. Consequently, the backend DBMS must deploy scalable techniques to deal with increasing data sizes, and increasing number of mobile objects. The key focus of the COMET project is on developing efficient and scalable methods for querying on past, present, and future locations of moving objects, and on scalable trigger mechanism in this environment. The expected results of this project may have a strong impact on emerging notification-based applications, such as emergency response systems, in which critical data needs to be disseminated to a physical mobile user based on the user's current and changing spatial location. The project will also train a number of graduate and undergraduate students. The project Web site (http://www.eecs.umich.edu/~jignesh/comet) will be used for making the COMET software, all developed applications, and real user movement data freely available to a broad research community.
位置感知设备的使用,如带有GPS的手机或带有RFID(射频识别)标签的物体,在许多新兴的时空应用中呈爆炸式增长。 传统的数据库管理系统(DBMS)并不是设计来处理这样的应用程序,特别是如果应用程序需要管理大量的移动对象。COMET(不断发展的轨迹的持续管理)项目的目标是设计,实施和建立一个数据库管理系统,用于管理不断发展的轨迹数据集的大型存储库。由于在这些环境中,位置更新是不断发出的,DBMS必须支持非常有效的方法来处理更新。此外,为了允许查询移动对象的先前位置,DBMS必须跟踪过去的轨迹。随着时间的推移,这些轨迹的长度继续增加,并且随着移动对象的数量不断增加,数据库的大小可能会急剧增加。因此,后端数据库管理系统必须部署可扩展的技术来处理不断增加的数据大小和不断增加的移动的对象数量。COMET项目的重点是开发高效和可扩展的方法来查询移动对象的过去,现在和未来的位置,并在此环境中的可扩展的触发机制。这一项目的预期成果可能会对新出现的基于通知的应用程序产生重大影响,例如应急系统,其中需要根据用户当前和不断变化的空间位置向实际移动的用户传播关键数据。该项目还将培训一些研究生和本科生。该项目的网址(http://www.eecs.umich.edu/cometjignesh/comet)将用于向广大研究界免费提供COMET软件、所有开发的应用程序和真实的用户移动数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jignesh Patel其他文献

Where do we go now with low molecular weight heparin use in obstetric care?
低分子肝素在产科护理中的应用现在该走向何方?
  • DOI:
    10.1111/j.1538-7836.2008.03048.x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Jignesh Patel;Beverley J Hunt
  • 通讯作者:
    Beverley J Hunt
Stereotactic radiotherapy for neovascular age-related macular degeneration (STAR): a pivotal, randomised, double-masked, sham-controlled device trial
立体定向放射治疗新生血管性年龄相关性黄斑变性 (STAR):一项关键、随机、双盲、假手术对照装置试验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy L Jackson;Riti Desai;Hatem A Wafa;Yanzhong Wang;Janet Peacock;T. Peto;U. Chakravarthy;Helen Dakin;Sarah Wordsworth;Cornelius Lewis;Patricia Clinch;Lisa Ramazzotto;J. Neffendorf;Chan Ning Lee;Joe M. O’Sullivan;B. Reeves;S. Abugreen;Mandeep Bindra;Ben Burton;I. Dias;Christiana B Dinah;Ravikiran Gandhewar;Athanasios Georgas;Srinivas Goverdhan;Ansari Gulrez;Richard Haynes;Edward Hughes;Timothy L Jackson;A. Jafree;Sobha Joseph;Tarek Kashab;L. Membrey;Geeta Menon;Aseema Misra;Niro Narendran;Douglas Newman;Jignesh Patel;Sudeshna Patra;R. Petrarca;Prakash Priya;Arora Rashi;Ramiro Salom;Paritosh Shah;Izadi Shahrnaz;George Sheen;Marianne Shiew;P. Tesha;Eleni Vrizidou
  • 通讯作者:
    Eleni Vrizidou
An interesting case of intestinal pseudo-obstruction: MNGIE.
一个有趣的假性肠梗阻病例:MNGIE。
CARDIAC ARREST AS THE FIRST CLINICAL SIGN OF SARCOIDOSIS
  • DOI:
    10.1016/j.chest.2019.08.418
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shaurya Sharma;Jignesh Patel;Shyam Shankar;Prarthna Chandar;Guy Kulbak;William omar azar; Pascal
  • 通讯作者:
    Pascal
OUTCOMES OF HEARTS TRANSPLANTED FROM ≥60 YEAR-OLD DONORS
  • DOI:
    10.1016/s0735-1097(20)31441-8
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Jack Aguilar;Jignesh Patel;Michelle Kittleson;David Chang;Evan Paul Kransdorf;Adriana Shen;Keith Nishihara;Lawrence Czer;Jon A. Kobashigawa
  • 通讯作者:
    Jon A. Kobashigawa

Jignesh Patel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jignesh Patel', 18)}}的其他基金

Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
  • 批准号:
    2407755
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312739
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2407690
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
  • 批准号:
    1835446
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DCM: Data Management for Analytics Applications on Modern Architecture
BIGDATA:小型:DCM:现代架构上分析应用程序的数据管理
  • 批准号:
    1250886
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
III: Large: Collaborative Research: SciDB - An Array Oriented Data Management System for Massive Scale Scientific Data
III:大型:协作研究:SciDB - 用于大规模科学数据的面向数组的数据管理系统
  • 批准号:
    1110948
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
III: Medium: Energy-Efficient Data Processing
III:媒介:节能数据处理
  • 批准号:
    0963993
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
COMET: An Efficient and Scalable Trajectory Data Management System
COMET:高效且可扩展的轨迹数据管理系统
  • 批准号:
    0929988
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Integrated Biological Sequence Data Management
综合生物序列数据管理
  • 批准号:
    0926269
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Integrated Biological Sequence Data Management
综合生物序列数据管理
  • 批准号:
    0543272
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
  • 批准号:
    2337674
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
  • 批准号:
    2340011
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
  • 批准号:
    10079403
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Collaborative R&D
PFI-RP: Novel Sensors for Efficient and Scalable Production of Indoor Crops
PFI-RP:用于高效、可规模化生产室内作物的新型传感器
  • 批准号:
    2329885
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Scalable Manufacturing Technology for Mobile Signal Penetrating Energy-Efficient Low-Emissivity Windows
SBIR 第一阶段:移动信号穿透节能低发射率窗户的可扩展制造技术
  • 批准号:
    2233675
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
dAIEDGE - A network of excellence for distributed, trustworthy, efficient and scalable AI at the Edge
dAIEDGE - 分布式、值得信赖、高效且可扩展的边缘 AI 卓越网络
  • 批准号:
    10090788
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    EU-Funded
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
  • 批准号:
    2329871
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了