Integrated Biological Sequence Data Management
综合生物序列数据管理
基本信息
- 批准号:0543272
- 负责人:
- 金额:$ 57.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-10-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Michigan is awarded funds to develop a comprehensive system that can support complex declarative and efficient querying on biological sequences, called SEQ. The approach is to extend a relational database engine with sophisticated and powerful methods for querying on sequences. Extending a relational database engine, rather than build a stand-alone sequence query processing tool, is a much more challenging task, but is essential as it allows the end-user to combine the power of analytical facilities already provided by SQL engines with the added ability to query sequences. A crucial aspect of this approach is to have a clean query algebra that provides a powerful set of biological sequence querying features, and can be accommodated within the framework of an extended relational model. SEQ will be implemented by extending the existing Postgres database engine. The collaboration between the investigators (computer scientists and biomedical researchers) will also facilitate actual deployment of the SEQ system in a project that will analyze various genomes for transcriptional regulatory elements related to genes essential for eye development and visual function. The key intellectual contribution of this proposal is in the development of a declarative querying tool for managing biological sequence data sets in a relational framework. This effort naturally requires designing and implementing methods that span most of the layers of a relational database engine, including query algebra, query language, query processing algorithms, data storage methods, and query optimization methods. The SEQ project will lead to new computer science methods for sequence query processing in each of these database management aspects. A current preliminary prototype clearly demonstrates the tremendous functionality and performance benefits of these aspects in the SEQ approach. In addition to the contributions that SEQ will make to computer science research, the project will also directly assist in the analysis of downstream targets for a transcription factor critical for rod photoreceptor development and function. The broader impacts of this proposal are in enabling life scientists to query and manage sequence data using declarative and efficient querying methods, and to enable the processing of complex sequence queries with traditional relational querying. The project will result in a free open-source OSI-certified release of the SEQ system using the ECL license. This release will allow the entire life sciences community to leverage these powerful querying methods. We note that a number of model organism databases are starting to use relational databases (often Postgres) for managing sequence data; as an example see the Chado schema used by GMOD. Sequence analysis tools are very applicable to this broader range of users as the system will essentially add complex sequence querying functionality (with efficient performance) to Postgres. The broader impacts of this proposal include enhancing the nascent bioinformatics curriculum at the University of Michigan. The project will result in cross-training computer science PhD students in life sciences research, and include the training of at least one women PhD. This project will allow undergraduate and graduate students, post-doctoral staff, and faculty in the EECS department and the Kellogg's Eye Center at the University of Michigan to foster a close interaction in the methods that span the disciplines of computer science and genetics.
密歇根大学获得资金开发一个综合系统,可以支持复杂的声明和有效的查询生物序列,称为SEQ。该方法是扩展一个关系数据库引擎与复杂和强大的方法查询序列。扩展一个关系数据库引擎,而不是建立一个独立的序列查询处理工具,是一个更具挑战性的任务,但它是必不可少的,因为它允许最终用户结合联合收割机已经提供的SQL引擎与查询序列的能力增加分析设施的权力。这种方法的一个重要方面是要有一个干净的查询代数,提供了一个强大的生物序列查询功能集,并可以容纳在一个扩展的关系模型的框架内。SEQ将通过扩展现有的Postgres数据库引擎来实现。研究人员(计算机科学家和生物医学研究人员)之间的合作也将促进SEQ系统在一个项目中的实际部署,该项目将分析各种基因组中与眼睛发育和视觉功能所必需的基因相关的转录调控元件。这个建议的主要智力贡献是在一个关系框架中管理生物序列数据集的声明性查询工具的开发。这种努力自然需要设计和实现跨越关系数据库引擎的大多数层的方法,包括查询代数、查询语言、查询处理算法、数据存储方法和查询优化方法。SEQ项目将导致在这些数据库管理方面的每一个序列查询处理的新的计算机科学方法。目前的初步原型清楚地证明了SEQ方法中这些方面的巨大功能和性能优势。除了SEQ将对计算机科学研究做出的贡献外,该项目还将直接协助分析对视杆细胞发育和功能至关重要的转录因子的下游靶点。该建议的更广泛的影响是使生命科学家能够使用声明性和有效的查询方法来查询和管理序列数据,并能够使用传统的关系查询来处理复杂的序列查询。该项目将导致使用ECL许可证的SEQ系统的免费开源OSI认证版本。此版本将允许整个生命科学社区利用这些强大的查询方法。我们注意到,许多模式生物数据库开始使用关系数据库(通常是Postgres)来管理序列数据;作为一个例子,请参阅GMOD使用的Chado模式。序列分析工具非常适用于这一更广泛的用户,因为系统将基本上为Postgres添加复杂的序列查询功能(具有高效的性能)。这一提议的更广泛影响包括加强密歇根大学新生的生物信息学课程。该项目将对计算机科学博士生进行生命科学研究方面的交叉培训,包括至少培训一名女博士。该项目将允许本科生和研究生,博士后工作人员,并在EECS部门和凯洛格的眼科中心在密歇根大学的教师,以促进跨越计算机科学和遗传学学科的方法密切互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jignesh Patel其他文献
Stereotactic radiotherapy for neovascular age-related macular degeneration (STAR): a pivotal, randomised, double-masked, sham-controlled device trial
立体定向放射治疗新生血管性年龄相关性黄斑变性 (STAR):一项关键、随机、双盲、假手术对照装置试验
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Timothy L Jackson;Riti Desai;Hatem A Wafa;Yanzhong Wang;Janet Peacock;T. Peto;U. Chakravarthy;Helen Dakin;Sarah Wordsworth;Cornelius Lewis;Patricia Clinch;Lisa Ramazzotto;J. Neffendorf;Chan Ning Lee;Joe M. O’Sullivan;B. Reeves;S. Abugreen;Mandeep Bindra;Ben Burton;I. Dias;Christiana B Dinah;Ravikiran Gandhewar;Athanasios Georgas;Srinivas Goverdhan;Ansari Gulrez;Richard Haynes;Edward Hughes;Timothy L Jackson;A. Jafree;Sobha Joseph;Tarek Kashab;L. Membrey;Geeta Menon;Aseema Misra;Niro Narendran;Douglas Newman;Jignesh Patel;Sudeshna Patra;R. Petrarca;Prakash Priya;Arora Rashi;Ramiro Salom;Paritosh Shah;Izadi Shahrnaz;George Sheen;Marianne Shiew;P. Tesha;Eleni Vrizidou - 通讯作者:
Eleni Vrizidou
Where do we go now with low molecular weight heparin use in obstetric care?
低分子肝素在产科护理中的应用现在该走向何方?
- DOI:
10.1111/j.1538-7836.2008.03048.x - 发表时间:
2008 - 期刊:
- 影响因子:10.4
- 作者:
Jignesh Patel;Beverley J Hunt - 通讯作者:
Beverley J Hunt
An interesting case of intestinal pseudo-obstruction: MNGIE.
一个有趣的假性肠梗阻病例:MNGIE。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jignesh Patel;A. Agasti;C. Vashishtha;A. Samarth;R. Goyal;P. Oak;P. Sawant - 通讯作者:
P. Sawant
CARDIAC ARREST AS THE FIRST CLINICAL SIGN OF SARCOIDOSIS
- DOI:
10.1016/j.chest.2019.08.418 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Shaurya Sharma;Jignesh Patel;Shyam Shankar;Prarthna Chandar;Guy Kulbak;William omar azar; Pascal - 通讯作者:
Pascal
Impact of the 2018 Donor Heart Allocation System on Post Transplant Morbidity and Mortality
- DOI:
10.1016/j.cardfail.2020.09.430 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Lily K. Stern;Angela Velleca;Keith Nishihara;Adriana Shen;Michael Zaliznyak;Jignesh Patel;Danny Ramzy;Fardad Esmailian;Jon A. Kobashigawa;Michelle M. Kittleson - 通讯作者:
Michelle M. Kittleson
Jignesh Patel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jignesh Patel', 18)}}的其他基金
Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
- 批准号:
2407755 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2312739 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
- 批准号:
2407690 - 财政年份:2023
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
Elements: Software: Towards Efficient Embedded Data Processing
要素:软件:实现高效的嵌入式数据处理
- 批准号:
1835446 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
BIGDATA: Small: DCM: Data Management for Analytics Applications on Modern Architecture
BIGDATA:小型:DCM:现代架构上分析应用程序的数据管理
- 批准号:
1250886 - 财政年份:2013
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
III: Large: Collaborative Research: SciDB - An Array Oriented Data Management System for Massive Scale Scientific Data
III:大型:协作研究:SciDB - 用于大规模科学数据的面向数组的数据管理系统
- 批准号:
1110948 - 财政年份:2011
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
III: Medium: Energy-Efficient Data Processing
III:媒介:节能数据处理
- 批准号:
0963993 - 财政年份:2010
- 资助金额:
$ 57.51万 - 项目类别:
Continuing Grant
COMET: An Efficient and Scalable Trajectory Data Management System
COMET:高效且可扩展的轨迹数据管理系统
- 批准号:
0929988 - 财政年份:2008
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
Integrated Biological Sequence Data Management
综合生物序列数据管理
- 批准号:
0926269 - 财政年份:2008
- 资助金额:
$ 57.51万 - 项目类别:
Continuing Grant
COMET: An Efficient and Scalable Trajectory Data Management System
COMET:高效且可扩展的轨迹数据管理系统
- 批准号:
0414510 - 财政年份:2005
- 资助金额:
$ 57.51万 - 项目类别:
Standard Grant
相似海外基金
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 57.51万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a sequence and stimulation dependent regulation method of epitranscriptome and its application to biological clock
表观转录组序列和刺激依赖性调控方法的建立及其在生物钟中的应用
- 批准号:
21K19046 - 财政年份:2021
- 资助金额:
$ 57.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Limits of Inference from Biological Sequence Analysis
生物序列分析推论的局限性
- 批准号:
2480946 - 财政年份:2020
- 资助金额:
$ 57.51万 - 项目类别:
Studentship
Development of Semi-Supervised Deep Learning Approaches for Predicting Biological Properties from Protein Sequence Data
开发用于从蛋白质序列数据预测生物特性的半监督深度学习方法
- 批准号:
2299748 - 财政年份:2019
- 资助金额:
$ 57.51万 - 项目类别:
Studentship
Interpretable and extendable deep learning model for biological sequence analysis and prediction
用于生物序列分析和预测的可解释和可扩展的深度学习模型
- 批准号:
10395451 - 财政年份:2018
- 资助金额:
$ 57.51万 - 项目类别:
Interpretable and extendable deep learning model for biological sequence analysis and prediction
用于生物序列分析和预测的可解释和可扩展的深度学习模型
- 批准号:
9925232 - 财政年份:2018
- 资助金额:
$ 57.51万 - 项目类别:
Interpretable and extendable deep learning model for biological sequence analysis and prediction
用于生物序列分析和预测的可解释和可扩展的深度学习模型
- 批准号:
10409152 - 财政年份:2018
- 资助金额:
$ 57.51万 - 项目类别:
Algebraically informed models of biological sequence evolution
生物序列进化的代数模型
- 批准号:
DP150100088 - 财政年份:2015
- 资助金额:
$ 57.51万 - 项目类别:
Discovery Projects
MicrobesNG: A scalable replicable biological sample repository incorporating whole-genome sequence data and analysis of thousands of microbial strains
MicrobesNG:一个可扩展的可复制生物样本库,包含全基因组序列数据和数千种微生物菌株的分析
- 批准号:
BB/L024209/1 - 财政年份:2014
- 资助金额:
$ 57.51万 - 项目类别:
Research Grant
Determining the biological significance of allelic sequence variation within the T cell receptor loci
确定 T 细胞受体基因座内等位基因序列变异的生物学意义
- 批准号:
nhmrc : 1067374 - 财政年份:2014
- 资助金额:
$ 57.51万 - 项目类别:
Project Grants