Cloud Parameterization Frameworks

云参数化框架

基本信息

  • 批准号:
    0415184
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

The PI will continue his development of parameterizations of convective cloud systems and the planetary boundary layer (PBL). His new PBL parameterization will include a mechanistic representation of the vertical transport of horizontal momentum by roll circulations. The model predicts the width and orientation of the rolls, and the perturbation wind field is diagnosed. This information is used to compute the perturbation pressure field from the anelastic pressure equation, and this in turn is used to compute the pressure correlations needed to predict the vertical velocity variance and other statistics. The parameterization will be tested using large-eddy simulation (LES) results. The PBL parameterization will be altered to use an explicit PBL depth, with about 10 or fewer layers inside. The PI's intention is to test this parameterization in the Colorado State University general circulation model and eventually in the Community Climate System Model. In order to predict the depth, he must parameterize the entrainment rate. He will develop an entrainment parameterization that is designed for use with a vertically resolved PBL and predicted statistics such as the skewness of the vertical velocity field. This fresh look at the entrainment problem, from a different perspective, may lead to an improvement in the understanding of the basic physics. Some emphasis will be placed on the role of evaporative cooling in enhancing the entrainment rate and reducing the fractional cloudiness. The top-hat probability density function (PDF) used in his earlier work will be replaced by a more realistic and flexible "spatial distribution function." Finally, the new parameterization will include a representation of precipitation processes. The parameterization of deep convection will be altered to abandon the Arakawa-Schubert approach based on an entraining plume cloud model with a spectrum of cloud types. In its place the PI will put a single convective updraft at each level, but with a resolved internal structure. This will improve the scaling of the parameterization as the vertical resolution of the model is increased. Convective downdrafts and stratiform clouds will also be included in this framework. The PI's revised parameterization of deep convection and the attendant stratiform clouds will make use of a new cloud model for parameterization. In the Arakawa-Schubert parameterization there are many cloud types, each with a crudely idealized internal structure. The PI will replace this by a single "cloud type" with a more realistic internal structure, including joint variations (at a given level) of the vertical velocity and the thermodynamic variables. Convective downdrafts will be represented through a second PDF. The PDF of the cloud model can include both convective and stratiform clouds in a unified framework. In fact, the PDF can even include such things as spatial variability of the water vapor mixing ratio in clear air. It has been suggested that humid mesoscale regions (surrounded by much drier air) can provide nurturing environments for the growth of deep cumuli, and that in the absence of such mesoscale humid regions deep convection is suppressed. By parameterizing the mesoscale variability of water vapor in clear air, the PI can explore this idea in the context of a large-scale model. His work will be guided by the results obtained with high-resolution cloud models. To complete the parameterization, his new cloud model will be combined with a prognostic closure. He will predict multiple moments of the vertical velocity as functions of height, as well as multiple moments of the thermodynamic variables. This research will represent a step towards unification of the parameterizations of the PBL and deep convection.Broader Impacts:The research will pave the way for improved weather forecasts and improved simulations of climate change. Deficiencies in cloud parameterizations are widely acknowledged to be among the most serious obstacles standing in the way of more reliable simulations of climate change. The research will also contribute to the training of graduate students and postdoctoral researchers for careers in atmospheric science.
PI将继续发展对流云系和行星边界层的参数化。他新的边界层参数化将包括一个机械表示的水平动量的垂直运输滚动环流。该模式预报了卷的宽度和方向,并诊断了扰动风场。该信息用于从滞弹性压力方程计算扰动压力场,这又用于计算预测垂直速度方差和其他统计所需的压力相关性。参数化将使用大涡模拟(LES)结果进行测试。PBL参数化将被更改为使用显式PBL深度,内部约有10个或更少的层。PI的目的是在科罗拉多州立大学的大气环流模型中测试这种参数化,并最终在社区气候系统模型中进行测试。为了预测深度,他必须以卷吸率为参数。他将开发一个夹带参数化,是专为使用垂直解决PBL和预测的统计数据,如垂直速度场的偏度。从不同的角度对夹带问题的这种新的看法可能会导致对基础物理学的理解的提高。重点将放在蒸发冷却在提高卷吸率和减少云量方面的作用上。在他早期的工作中使用的大礼帽概率密度函数(PDF)将被一个更现实和灵活的“空间分布函数”所取代。“最后,新的参数化将包括降水过程的表示。深对流的参数化将被改变,放弃Arakawa-Schubert方法的基础上夹带羽流云模式与云类型的频谱。在它的位置上,PI将在每一层放置一个单独的对流上升气流,但具有一个解析的内部结构。随着模式垂直分辨率的增加,这将改善参数化的比例。对流下沉气流和层状云也将包括在这个框架中。PI修正的深对流和伴随的层状云的参数化将使用一个新的云模式进行参数化。在Arakawa-Schubert参数化中有许多云类型,每一种都有一个粗略理想化的内部结构。PI将用具有更真实内部结构的单一“云类型”来取代它,包括垂直速度和热力学变量的联合变化(在给定水平上)。对流下降气流将通过第二个PDF表示。云模型的PDF可以在统一的框架中包括对流云和层状云。事实上,PDF甚至可以包括诸如晴空中水汽混合比的空间变异性之类的东西。有人认为,潮湿的中尺度区域(周围有更干燥的空气)可以为深积云的生长提供滋养环境,而在没有这种中尺度潮湿区域的情况下,深对流会受到抑制。通过参数化晴空中水汽的中尺度变率,PI可以在大尺度模式的背景下探索这一想法。他的工作将以高分辨率云模型获得的结果为指导。为了完成参数化,他的新云模型将与预测闭合相结合。他将预测垂直速度的多个时刻作为高度的函数,以及热力学变量的多个时刻。这项研究将代表着边界层和深对流参数化统一的一步。更广泛的影响:这项研究将为改进天气预报和改进气候变化模拟铺平道路。云参数化的缺陷被广泛认为是阻碍更可靠的气候变化模拟的最严重障碍之一。这项研究还将有助于培养研究生和博士后研究人员从事大气科学工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Randall其他文献

Simulations With EarthWorks
使用 EarthWorks 进行模拟
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Randall;James Hurrell;Donald Dazlich;Lantao Sun;William Skamarock;Andrew Gettelman;Thomas Hauser;Sheri Mickelson;Mariana Vertenstein;Richard Loft
  • 通讯作者:
    Richard Loft
CSCW: Discipline or Paradigm? A Sociological Perspective
CSCW:纪律还是范式?
  • DOI:
    10.1007/978-94-011-3506-1_23
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Hughes;David Randall;D. Shapiro
  • 通讯作者:
    D. Shapiro
RetrofittAR: Supporting Hardware-Centered Expertise Sharing in Manufacturing Settings through Augmented Reality
Analysis of effects and usage indicators for a ICT-based fall prevention system in community dwelling older adults
基于ICT的跌倒预防系统对社区老年人的效果和使用指标分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Vaziri;Konstantin Aal;Y. Gschwind;K. Delbaere;Anne Weibert;J. Annegarn;H. D. Rosario;R. Wieching;David Randall;V. Wulf
  • 通讯作者:
    V. Wulf
Biopoetics and Hermeneutics: The Postal Metaphor in Il Postino
生命诗学与诠释学:《Il Postino》中的邮政隐喻

David Randall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Randall', 18)}}的其他基金

Workshop on Future Storm-Resolving Configurations of Community Earth System Model (CESM); Fort Collins, Colorado; Two days in April 2023
社区地球系统模型(CESM)未来风暴解决配置研讨会;
  • 批准号:
    2242189
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Community-Based Weather and Climate Simulation With a Global Storm-Resolving Model
合作研究:框架:基于社区的天气和气候模拟以及全球风暴解决模型
  • 批准号:
    2005137
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: A Teleconnection between the Tropical Madden-Julian Oscillation and Arctic Sudden Stratospheric Warming Events in Warm Climates
合作研究:热带马登-朱利安涛动与温暖气候下北极平流层突然变暖事件之间的遥相关
  • 批准号:
    1826643
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Implementation and evaluation of the unified parameterization in NCAR Community Atmospheric Model
NCAR社区大气模型统一参数化的实现与评估
  • 批准号:
    1538532
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CI-P: Cyber-Infrastructure for the Cloud-Climate Community
CI-P:云气候社区的网络基础设施
  • 批准号:
    1059323
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Tropical Variability in a New Generation of Coupled Climate Simulations with Explicitly Resolved Convection
合作研究:新一代耦合气候模拟中的热带变化与显式解析的对流
  • 批准号:
    1119999
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Simulations of Anthropogenic Climate Change Using a Multi-Scale Modeling Framework
合作研究:使用多尺度建模框架模拟人为气候变化
  • 批准号:
    1049041
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PRAC Collaborative Research: Testing Hypotheses about Climate Prediction at Unprecedented Resolutions on the NSF Blue Waters System
PRAC 合作研究:在 NSF Blue Waters 系统上以前所未有的分辨率测试有关气候预测的假设
  • 批准号:
    0832705
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Center for Multi-Scale Modeling of Atmospheric Processes (MMAP)
大气过程多尺度模拟中心 (MMAP)
  • 批准号:
    0425247
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
The Madden-Julian Oscillation in General Circulation Models: An Analysis of Factors Relevant to Its Initiation, Maintenance, and Suppression
大气环流模型中的马登-朱利安振荡:与其引发、维持和抑制相关的因素分析
  • 批准号:
    0224559
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
  • 批准号:
    2336002
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307150
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High power battery characterization for parameterization of battery management systems
用于电池管理系统参数化的高功率电池表征
  • 批准号:
    578447-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
CAREER: Toward a Foundation of Over-Parameterization
职业生涯:迈向超参数化的基础
  • 批准号:
    2143493
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
  • 批准号:
    2143215
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ocean convection and mixing: from signature to parameterization
海洋对流和混合:从签名到参数化
  • 批准号:
    RGPIN-2018-03740
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Time-Resolved Spectral Parameterization of Neural Activity
神经活动的时间分辨谱参数化
  • 批准号:
    572856-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了