IMR: Development of an Optimized Scanning X-Ray Microdiffraction System for Materials Research and Education

IMR:开发用于材料研究和教育的优化扫描 X 射线微衍射系统

基本信息

  • 批准号:
    0416243
  • 负责人:
  • 金额:
    $ 32.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

This project will further develop a very productive synchrotron-based X-ray microdiffraction (mXRD) system at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. X-ray microdiffraction is a recent technique that employs sub-um X-ray beams and yields unique information on material structure, strain, texture and defects at the microstructural level. Since most material properties are dictated by mechanisms that occur at this level, mXRD offers a powerful tool to better understand materials. This project will further improve and optimize the mXRD system at ALS by: (i) improving spatial resolution (below 100 nm); (ii) allowing real-time data analysis; (iii) introducing higher strain resolution (down to 10-5) and deeper penetration by extending the X-ray energy range; and (iv) permitting three-dimensional measurements. The new mXRD system will allow the first time study of important problems in materials science and engineering that include stress, structure and domain micromechanics studies in ferroelectrics; investigation of metal deformation at the nanoscale and deformation mechanisms in metallic glasses; study of phase and stress evolution in oxide films; constitutive behavior investigation of shape memory alloys; electromigration and stress studies in microelectronic devices. The upgrade is also expected to raise the productivity of the mXRD beamline significantly due to faster data acquisition and analysis. For education and outreach, this project will offer unique training opportunities to students at all levels between high school and graduate school. This project will add new capabilities to a very productive synchrotron-based X-ray microdiffraction (mXRD) system to allow a new range of challenging materials science problems to be addressed. X-ray microdiffraction has been enabled at the sub-um scale in the last 5 years and the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory has made pioneering advances in this area. The mXRD technique at ALS has been successfully applied to determine strain and defect distributions at the microstructural level in numerous materials. This project will further improve and optimize the mXRD system at ALS by: (i) improving spatial resolution (below 100 nm); (ii) allowing real-time data analysis; (iii) introducing higher strain resolution (down to 10-5) and deeper penetration by extending the X-ray energy range; and (iv) permitting 3-D measurements. The new mXRD system will allow the first time study of important problems in materials science and engineering that include stress, structure and domain micromechanics studies in ferroelectrics; investigation of metal deformation at the nanoscale and deformation mechanisms in metallic glasses; study of phase and stress evolution in oxide films; constitutive behavior investigation of shape memory alloys; electromigration and stress studies in microelectronic devices. The upgrade is also expected to raise the productivity of the mXRD beamline significantly due to faster data acquisition and analysis. For education and outreach, this project will offer unique training opportunities to students at all levels between high school and graduate school.
该项目将在劳伦斯伯克利国家实验室的高级光源(ALS)中进一步开发一种非常高效的基于同步加速器的X射线显微衍射(MXRD)系统。X射线微衍射是一种利用亚微米X射线束并在微观结构水平上产生关于材料结构、应变、织构和缺陷的独特信息的最新技术。由于大多数材料的性能是由发生在这一水平上的机制决定的,mXRD为更好地理解材料提供了一个强大的工具。该项目将通过:(I)提高空间分辨率(低于100 nm);(Ii)允许实时数据分析;(Iii)通过扩大X射线能量范围引入更高的应变分辨率(低至10-5)和更深的穿透;以及(Iv)允许进行三维测量,从而进一步改进和优化ALS的mXRD系统。新的mXRD系统将使材料科学和工程中的重要问题首次得到研究,包括铁电材料中的应力、结构和磁区微观力学研究;纳米尺度下的金属变形和金属玻璃中的变形机制研究;氧化物薄膜中的相和应力演化研究;形状记忆合金的本构行为研究;微电子设备中的电迁移和应力研究。由于数据采集和分析的速度更快,预计此次升级还将显著提高mXRD光束线的生产率。在教育和外展方面,该项目将为从高中到研究生院的所有级别的学生提供独特的培训机会。该项目将为一个非常高效的基于同步加速器的X射线微衍射系统增加新的能力,以便解决一系列新的具有挑战性的材料科学问题。在过去的5年里,X射线显微衍射已经在亚微米尺度上得以实现,劳伦斯伯克利国家实验室的先进光源(ALS)在这一领域取得了开创性的进展。在ALS的mXRD技术已经成功地应用于在许多材料的微结构水平上确定应变和缺陷分布。该项目将通过:(I)提高空间分辨率(低于100 nm);(Ii)允许实时数据分析;(Iii)通过扩大X射线能量范围引入更高的应变分辨率(降至10-5)和更深的穿透;以及(Iv)允许进行3D测量,从而进一步改进和优化ALS的mXRD系统。新的mXRD系统将使材料科学和工程中的重要问题首次得到研究,包括铁电材料中的应力、结构和磁区微观力学研究;纳米尺度下的金属变形和金属玻璃中的变形机制研究;氧化物薄膜中的相和应力演化研究;形状记忆合金的本构行为研究;微电子设备中的电迁移和应力研究。由于数据采集和分析的速度更快,预计此次升级还将显著提高mXRD光束线的生产率。在教育和外展方面,该项目将为从高中到研究生院的所有级别的学生提供独特的培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ersan Ustundag其他文献

Mechanical property optimization of parts manufactured via parametrized helical printing

Ersan Ustundag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ersan Ustundag', 18)}}的其他基金

CAREER: In-Situ Characterization of Materials
职业:材料的原位表征
  • 批准号:
    0514727
  • 财政年份:
    2004
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Continuing Grant
CAREER: In-Situ Characterization of Materials
职业:材料的原位表征
  • 批准号:
    9985264
  • 财政年份:
    2000
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of individualized optimized neurorehabilitation to promote recovery of motor function after stroke
开发个体化优化神经康复以促进中风后运动功能的恢复
  • 批准号:
    23K10417
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Optimized Reversible Pin1 Inhibitors to Block Multiple Cancer-Driving Pathways and to Disrupt Immunosuppressive Tumor Microenvironment
开发优化的可逆 Pin1 抑制剂以阻断多种癌症驱动途径并破坏免疫抑制肿瘤微环境
  • 批准号:
    494870
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Operating Grants
Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
  • 批准号:
    10727359
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
Therapeutic Relevance of Abnormal Airway Morphology in Asthma: A Path to Optimized Management and Drug Development (AirPATH Study)
哮喘气道形态异常的治疗相关性:优化管理和药物开发的途径(AirPATH 研究)
  • 批准号:
    490077
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Operating Grants
Development of optimized adeno-associated viral capsids for muscle gene therapy
开发用于肌肉基因治疗的优化腺相关病毒衣壳
  • 批准号:
    10758732
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
  • 批准号:
    23K00651
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of optimized AAVrh74 vectors for gene therapy of muscular dystrophies
开发用于肌营养不良症基因治疗的优化 AAVrh74 载体
  • 批准号:
    10597357
  • 财政年份:
    2023
  • 资助金额:
    $ 32.12万
  • 项目类别:
Development of antibody design optimized for active targeting
开发针对主动靶向优化的抗体设计
  • 批准号:
    22H02935
  • 财政年份:
    2022
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an optimized electrochemical modular system to transform captured CO2 into formate salt as deicing agent
开发优化的电化学模块化系统,将捕获的二氧化碳转化为甲酸盐作为除冰剂
  • 批准号:
    570918-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Applied Research and Development Grants - Level 3
Development of an optimized pilot-scale process for extraction and purification of polyphenols contained in residual leaves of cranberry
开发用于提取和纯化蔓越莓残叶中所含多酚的优化中试工艺
  • 批准号:
    548793-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 32.12万
  • 项目类别:
    Applied Research and Development Grants - Level 2
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了