MRI: Development of a Combination High Resolution and Low Current Density Inverse Photoemission Spectrograph for Research and Eduction
MRI:开发用于研究和教育的高分辨率和低电流密度逆光电发射光谱仪组合
基本信息
- 批准号:0421177
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, tremendous advances have been achieved in the development of new materials such as highly correlated electron systems, nanoscale materials, organic semiconductors and promising species for molecular electronics. While photoelectron spectroscopy has played a central role in establishing key properties of these materials, there has been markedly less progress towards understanding the spectral function above EF. Inverse photoemission (IPE) spectroscopy is the natural choice for probing this energy range, but high current densities and low energy resolution limit its application to these interesting systems. The proposed instrument will greatly relieve these shortcomings and open to experimental scrutiny the spectral function above the Fermi level of these interesting materials. The information gained from this new instrument will enable intelligent design of candidate species for molecular electronics or organic semiconductor applications. Similarly it will test our current theoretical understanding of highly correlated electron systems by experimentally probing the energy and momentum dependence of the spectral function in a new regime. We will develop and construct the prototype for a new generation of inverse photoemission spectrographs that will serve the dual demands of modern materials science -- low current density and high energy resolution -- while maintaining high count rates. This objective will be achieved by a design principle that exploits the compatibility between a fast (f/5) normal incidence grating spectrograph and the spatially extended linear electron spot produced by either of two sources: a modified, high perveance electron gun, and a high resolution electron energy monochromator. This dual source approach will enable us to perform rapid exploratory measurements and then investigate interesting features either with low current densities (~0.1 mA/mm2) or with high resolution (~ 50 meV) at good count rates (~ 100 Hz). The instruments will serve the research community at the University of Delaware, Rutgers University, and other neighboring institutions. With the proposed instrument, the PI's will add to their strong track record of outreach both within and out of the academic communities, as well as ensure members of underrepresented groups have direct participation in our research activities.The proposed instrument will give previously unattainable experimental access a wide range of problems in modern condensed matter and materials physics, semiconducting organic materials, organic molecular electronics, modern electronics, and superconductivity. This new instrument will probe, with very high energy resolution, the unfilled electronic levels in conducting systems with minimal perturbation of the other charge carriers and minimal damage to the materials system. We propose a program to develop and construct the prototype for a new generation of inverse photoemission spectrographs that will serve the dual demands of modern materials science -- low current density and high energy resolution -- while maintaining high count rates. While traditional photoelectron spectroscopy has played a central role in establishing key properties of the bonding and charge carriers in the filled electronic levels of these materials, there has been markedly less progress towards understanding the unfilled levels. Inverse photoemission (IPE) spectroscopy is the natural choice for probing this energy range, but high current densities and low energy resolution limit its application to these interesting systems. The proposed instrument will greatly relieve these shortcomings. The information gained from this new instrument will enable intelligent design of candidate species for molecular electronics or organic semiconductor applications. Similarly it will test our current theoretical understanding of highly correlated electron systems, for example, superconductors, by experimentally probing the energy and momentum dependence of the spectral function in a new regime. The instruments will serve the research community at the University of Delaware, Rutgers University, and other neighboring institutions. With the proposed instrument, the PI's will add to their strong track record of outreach both within and out of the academic communities, as well as ensure members of underrepresented groups have direct participation in our research activities.
最近,在新材料的开发中取得了巨大的进步,例如高度相关的电子系统,纳米级材料,有机半导体和有前途的分子电子物种。 尽管光电子光谱在建立这些材料的关键特性方面起着核心作用,但在理解EF上方的光谱函数方面的进展显着较少。 逆光发射(IPE)光谱是探测此能量范围的自然选择,但是高电流密度和低能分辨率将其应用于这些有趣的系统。 所提出的仪器将极大地缓解这些缺点,并对这些有趣材料的费米水平以上的光谱函数进行实验审查。 从这种新仪器中获得的信息将使候选物种智能设计用于分子电子或有机半导体应用。 同样,它将通过实验探测新制度中光谱函数的能量和动量依赖性来测试我们对高度相关电子系统的当前理论理解。 我们将开发和构建新一代的逆光发射光谱仪的原型,这些谱图将满足现代材料科学的双重需求 - 低电流密度和高能量分辨率 - 同时保持高计数速率。 该目标将通过设计原理来实现,该设计原理利用了快速(f/5)正常入射光谱仪与由两个来源中的任何一个产生的空间扩展的线性电子点之间的兼容性:一种改良的,高的PerVeance电子枪,高分辨率电子枪和高分辨率电子能量单色器。 这种双源方法将使我们能够进行快速的探索性测量,然后以低电流密度(〜0.1 mA/mm2)或高分辨率(〜50 meV)的良好计数速率(〜100 Hz)研究有趣的特征。 这些工具将为特拉华大学,罗格斯大学和其他邻近机构的研究社区提供服务。 借助拟议的仪器,PI将增加他们在学术社区内外的强烈宣传记录,并确保代表性不足的群体的成员直接参与我们的研究活动。拟议的仪器将使以前无法实现的实验访问现代凝聚力物质和材料物理学,半构造物质,有机材料,有机化学,有机化的电子,有机学,有机化学,有机材料。 该新仪器将以非常高的能量分辨率进行探测,在导电系统中,未填充的电子水平的摄动最小,对其他电荷载体的扰动最小,对材料系统的损害最小。 我们提出了一个计划,以开发和构建新一代的逆光发射光谱仪的原型,该光发射光谱仪将满足现代材料科学的双重需求 - 低电流密度和高能量分辨率 - 同时保持高计数速率。 尽管传统的光电子光谱在这些材料的填充电子水平中建立粘结和电荷载体的关键特性方面发挥了核心作用,但在理解未填充水平方面的进展显着较少。 逆光发射(IPE)光谱是探测此能量范围的自然选择,但是高电流密度和低能分辨率将其应用于这些有趣的系统。 拟议的工具将极大地缓解这些缺点。 从这种新仪器中获得的信息将使候选物种智能设计用于分子电子或有机半导体应用。 同样,它将通过实验探测光谱函数在新制度中的能量和动量依赖性来测试我们对高度相关电子系统(例如超导体)的当前理论理解。 这些工具将为特拉华大学,罗格斯大学和其他邻近机构的研究社区提供服务。 借助拟议的工具,PI将增加他们在学术社区内外的强大宣传记录,并确保代表性不足的群体的成员直接参与我们的研究活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Opila其他文献
Robert Opila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Opila', 18)}}的其他基金
PFI-TT: Next-generation hybrid solar cells enabling lower cost, safe, and environmentally friendly floating photovoltaic installations
PFI-TT:下一代混合太阳能电池可实现成本更低、安全且环保的浮动光伏装置
- 批准号:
2141122 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
I-Corps: Hybrid Organic/Silicon Solar Cells
I-Corps:混合有机/硅太阳能电池
- 批准号:
1655373 - 财政年份:2016
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Collaborative Research: Development of Novel Nonlinear Optical Contrast for High-Resolution Morphological and Chemical Imaging of Historical Artwork
合作研究:开发用于历史艺术品高分辨率形态和化学成像的新型非线性光学对比度
- 批准号:
1307098 - 财政年份:2013
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Collaborative Research: Combining Infrared Spectroscopy and Mass Spectrometry on a Nanophotonic Platform for Chemical Sensing
合作研究:在纳米光子平台上结合红外光谱和质谱进行化学传感
- 批准号:
1200406 - 财政年份:2012
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Short-Term Visit to Universidade Federal do Rio Grande do Sul to Plan Research on Materials with Electronic and Photonic Applications
短期访问南里奥格兰德联邦大学,规划电子和光子应用材料研究
- 批准号:
0335457 - 财政年份:2003
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
相似国自然基金
食草动物粪便微体化石组合及其在藏北史前农牧业发展研究中的应用
- 批准号:42277445
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于DNA甲基化的黑色素瘤预后组合标志物及其在黑色素瘤发展中作用机制的研究
- 批准号:82103055
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度从头算组合方法及高精度解析反应势函数发展
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
高精度从头算组合方法及高精度解析反应势函数发展
- 批准号:22173021
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
组合应用NMR代谢组学和16SrDNA测序技术研究肠道菌群调控“肠-脑”代谢稳态参与糖尿病脑病发生发展的时空网络机制
- 批准号:21974096
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
MRI Study of Hydrogen Water and Minocycline Combination Therapy for Ischemic Stroke
氢水与米诺环素联合治疗缺血性中风的MRI研究
- 批准号:
10564735 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Organic nanoparticles for dual MRI-guided therapeutic selection and ovarian cancer drug delivery
用于双重 MRI 引导治疗选择和卵巢癌药物输送的有机纳米颗粒
- 批准号:
9765043 - 财政年份:2017
- 资助金额:
$ 18.98万 - 项目类别:
Organic nanoparticles for dual MRI-guided therapeutic selection and ovarian cancer drug delivery
用于双重 MRI 引导治疗选择和卵巢癌药物输送的有机纳米颗粒
- 批准号:
10242148 - 财政年份:2017
- 资助金额:
$ 18.98万 - 项目类别:
ADVANCED MR FOR PROBING TUMOR MICROENVIRONMENT
用于探测肿瘤微环境的高级 MR
- 批准号:
8363920 - 财政年份:2011
- 资助金额:
$ 18.98万 - 项目类别:
Targeting nanotherapeutics against murine and feline oral cancer
针对小鼠和猫口腔癌的纳米疗法
- 批准号:
9353406 - 财政年份:2011
- 资助金额:
$ 18.98万 - 项目类别: