Preconditioning Techniques for Linear Systems of Equations

线性方程组的预处理技术

基本信息

  • 批准号:
    0431068
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

NSF Proposal Number: 0431068Title: Preconditioning techniques for linear systems of equationsPI: Vivek Sarin, Dept. of Computer Science, Texas A&M UniversityAbstract:The solution of linear systems of equations is a fundamental problem thatmust be tackled in various areas of science and engineering. Iterativemethods are used to solve large sparse systems from partial differentialequations as well as large dense systems from integral equations.Preconditioning techniques are necessary to accelerate the rate ofconvergence of these solvers. An ideal preconditioner should be robust,effective, parallelizable, and inexpensive to compute and apply to thelinear system. When solving dense systems, the unavailability of thecoefficient matrix often limits the choice of preconditioners. The goal ofthe project is to develop novel preconditioning techniques for sparse anddense linear systems. These techniques will use a sequence of lineartransformations to obtain a preconditioned system from the original one.Techniques will be developed to analyze the preconditioned system, andschemes will be developed to improve the effectiveness of thepreconditioner. The resulting preconditioners will be robust, effective,and inexpensive. These preconditioning techniques will be implemented,analyzed, and tested on a variety of problems. These efforts will beintegrated with interdisciplinary collaborative research activities toensure a greater impact on application areas.
NSF提案编号:0431068标题:线性方程组的预处理技术PI: Vivek Sarin,部门摘要:线性方程组的求解是科学和工程各个领域必须解决的基本问题.迭代法用于求解偏微分方程的大型稀疏方程组和积分方程的大型稠密方程组,为了加快收敛速度,必须采用预处理技术。一个理想的预条件子应该是鲁棒的、有效的、可并行化的,并且计算和应用于线性系统是廉价的。在求解稠密系统时,系数矩阵的不可用性往往限制了预条件子的选择。该项目的目标是开发新的预处理技术的稀疏和密集的线性系统。这些技术将使用一系列的线性变换,以获得一个预处理系统从原来的一个。技术将被开发来分析预处理系统,并计划将开发,以提高有效性的预处理。由此产生的预处理器将是强大的,有效的,和廉价的。这些预处理技术将被实施,分析和测试各种问题。这些努力将与跨学科的合作研究活动相结合,以确保对应用领域产生更大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Sarin其他文献

Vivek Sarin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Sarin', 18)}}的其他基金

ITR/AP: Modeling and Simulation of Sub-micron VLSI
ITR/AP:亚微米 VLSI 建模与仿真
  • 批准号:
    0113668
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Robust Preconditioners for Sparse Linear Systems
职业:稀疏线性系统的鲁棒预调节器
  • 批准号:
    9984400
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning techniques applied to non-linear differential equations
应用于非线性微分方程的机器学习技术
  • 批准号:
    572217-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating new approaches for narrowband but nevertheless high-precision wireless locating in multipath environments by means of iterative recursive non-linear state estimation techniques based on aperture synthesis and phase difference analysis in ant
基于ant中孔径合成和相位差分析的迭代递归非线性状态估计技术,研究多路径环境中窄带但高精度无线定位的新方法
  • 批准号:
    450697408
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Application of Unconventional Linear Algebra Techniques to Continuous Learning in Supergiant Neural Networks
非常规线性代数技术在超巨神经网络连续学习中的应用
  • 批准号:
    20K20624
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Algebraic Techniques in Algorithmic Graph Theory
算法图论中的线性代数技术
  • 批准号:
    RGPIN-2015-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Development, Implementation and Application of Coupled-Perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) Techniques for the Study of Linear and Non-linear Optical Properties of Solids and Minerals
用于研究固体和矿物的线性和非线性光学性质的耦合扰动 Hartree-Fock/Kohn-Sham (CPHF/KS) 技术的开发、实施和应用
  • 批准号:
    501266-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Cooperative Control of Multi-Agent Systems using Lyapunov-based Robust Non-linear Control Techniques
使用基于李亚普诺夫的鲁棒非线性控制技术的多智能体系统的协作控制
  • 批准号:
    488056-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了