SoD: Data and Meta-Data Integration Maintenance
SoD:数据和元数据集成维护
基本信息
- 批准号:0438866
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project focuses on developing a data integration and transformation process that supports maintainability, adaptability, and evolution. Data integration systems are software systems that permit the transformation, integration, and exchange of structured data that has been designed and developed independently. The often subtle and complex interdependencies within data can make the creation, maintenance, and use of such systems quite challenging. The PI, with the collaborator Renee Miller (University of Toronto) have available a robust arsenal of tools and mechanisms for reconciling semantic differences in how data is represented including views, mappings, and transformation languages. The major focus is on the maintenance of the metadata necessary to achieve semantic integration and sharing of data. This project develops an integration and transformation process that is designed for evolution. The research will develop a new theory of metadata discovery and adaptation based on modern statistical learning and a new theory of the data integration process, that supports not only automation, but also maintainability, adaptability and evolution. The major contribution of this research will be the development of a design process that supports robust data sharing, an crucial aspect in the Science of Design. As part of the broader impacts of this work, the expected results will contribute to an enhanced infrastructure for research by developing a benchmark for schema and mapping discovery and management tasks. The research results and the benchmark that will be accessible on the project Web site (http:/www.cs.umd.edu/~getoor/sod) to facilitate dissemination of knowledge and tools to a variety of scientific communities. The methods developed in this project will be of particular value to scientists who routinely need to gather, manage, and integrate diverse data sets. The researchers also plan to partner with industry collaborators in order to learn from and address industry needs, receive feedback, and facilitate technology transfer.
这个研究项目的重点是开发一个数据集成和转换过程,支持可维护性,适应性和演变。数据集成系统是允许独立设计和开发的结构化数据的转换、集成和交换的软件系统。数据中通常微妙而复杂的相互依赖性可能会使此类系统的创建、维护和使用变得非常具有挑战性。PI与合作者Renee米勒(多伦多大学)一起提供了一个强大的工具库和机制,用于协调数据表示方式的语义差异,包括视图,映射和转换语言。主要重点是维护实现数据语义整合和共享所需的元数据。该项目开发了一个为进化而设计的集成和转换过程。这项研究将发展一种新的理论,元数据发现和适应的基础上,现代统计学习和数据集成过程的新理论,不仅支持自动化,但也可维护性,适应性和演变。这项研究的主要贡献将是开发一个设计过程,支持强大的数据共享,这是设计科学的一个重要方面。作为这项工作更广泛影响的一部分,预期成果将有助于通过制定模式和映射发现和管理任务的基准来加强研究基础设施。研究结果和基准将在项目网站(http://www.cs.umd.edu/biggetoor/sod)上公布,以便利向各种科学界传播知识和工具。在这个项目中开发的方法将是特别有价值的科学家谁经常需要收集,管理和整合不同的数据集。研究人员还计划与行业合作者合作,以了解和满足行业需求,接收反馈,并促进技术转让。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lise Getoor其他文献
Collective Grounding: Applying Database Techniques to Grounding Templated Models
集体接地:将数据库技术应用于接地模板模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Augustine, Eriq;Lise Getoor - 通讯作者:
Lise Getoor
Soft quantification in statistical relational learning
- DOI:
10.1007/s10994-017-5647-3 - 发表时间:
2017-07-12 - 期刊:
- 影响因子:2.900
- 作者:
Golnoosh Farnadi;Stephen H. Bach;Marie-Francine Moens;Lise Getoor;Martine De Cock - 通讯作者:
Martine De Cock
Research Challenges and Opportunities in Knowledge Representation
知识表示的研究挑战和机遇
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Natasha Noy;Deborah L. McGuinness;Eyal Amir;Chitta Baral;Michael Beetz;S. Bechhofer;C. Boutilier;Anthony Cohn;J. Kleer;Michel Dumontier;Tim Finin;Kenneth D. Forbus;Lise Getoor;Yolanda Gil;J. Heflin;P. Hitzler;Craig A. Knoblock;Henry Kautz;Yuliya Lierler;Vladimir Lifschitz;Peter F. Patel;C. Piatko;D. Riecken;M. Schildhauer - 通讯作者:
M. Schildhauer
Lise Getoor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lise Getoor', 18)}}的其他基金
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023495 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: A Unified and Declarative Approach to Causal Analysis for Big Data
III:媒介:协作研究:大数据因果分析的统一声明式方法
- 批准号:
1703331 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
TRIPODS: Towards a Unified Theory of Structure, Incompleteness & Uncertainty in Heterogeneous Graphs
TRIPODS:迈向结构、不完备性的统一理论
- 批准号:
1740850 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
III: Small: A Theoretical Framework for Practical Entity Resolution in Network Data
III:小:网络数据中实际实体解析的理论框架
- 批准号:
1218488 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
FODAVA: Collaborative Research: Foundations of Comparative Analytics for Uncertainty in Graphs
FODAVA:协作研究:图形不确定性比较分析的基础
- 批准号:
0937094 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Student Poster Program and Travel Scholarships for International Conference on Machine Learning (ICML) 2009
2009 年国际机器学习会议 (ICML) 学生海报计划和旅行奖学金
- 批准号:
0935087 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Student Poster Program and Travel Scholarships for ICML 2008
ICML 2008 学生海报计划和旅行奖学金
- 批准号:
0830962 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Assessing Zika virus infection during pregnancy and adverse fetal, infant, and child outcomes: The Zika virus (ZIKV) Individual Participant Data (IPD) Meta-analyses (MA) Phase II and the analysis of surveillance-based IPD data. (ZIKV-IPD-MA-2S)
评估怀孕期间的寨卡病毒感染和不良胎儿、婴儿和儿童结局:寨卡病毒 (ZIKV) 个体参与者数据 (IPD) 荟萃分析 (MA) II 期和基于监测的 IPD 数据分析。
- 批准号:
495081 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Meta-Analysis of Metabolic Determinants of Exercise Response in Common Funds Data
共同基金数据中运动反应代谢决定因素的荟萃分析
- 批准号:
10772237 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian Meta-Learning for Earth Observation: Better Models with Less Data
用于地球观测的贝叶斯元学习:用更少的数据建立更好的模型
- 批准号:
2890092 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Predictive value of Parkinson's Disease gait model-derived features for disease severity and progression estimation: An individual patient data meta-analysis.
帕金森病步态模型衍生特征对疾病严重程度和进展估计的预测价值:个体患者数据荟萃分析。
- 批准号:
495240 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Sharing Developmental, Meta, and Video Data from Preterm Infants Enrolled in the SPEEDI Clinical Trial
共享参加 SPEEDI 临床试验的早产儿的发育、元数据和视频数据
- 批准号:
10789838 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Causality, Counterfactuals and Meta-learning to Address the Complexity of Fairness in Data Science and Machine Learning
因果关系、反事实和元学习解决数据科学和机器学习中公平性的复杂性
- 批准号:
2751295 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Optimal Endpoints in Clinical Trials of Cognitive Behavioral Interventions for AOD: An Aggregate and Individual Patient Data Meta-Analysis
AOD 认知行为干预临床试验的最佳终点:总体和个体患者数据荟萃分析
- 批准号:
10517932 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The DEPRESsion Screening Data (DEPRESSD) Project: A Novel International Individual Participant Data Meta-analysis Collaboration to Advance Research on Depression Screening Tool Accuracy, Develop Statistical Methodology, and Conduct Meta-Research
抑郁症筛查数据 (DEPRESSD) 项目:一项新颖的国际个人参与者数据荟萃分析合作,旨在推进抑郁症筛查工具准确性的研究、开发统计方法并进行荟萃研究
- 批准号:
461874 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Operating Grants
Data-driven search of Common Fund data sets for better discoverability and novel meta-analysis
对共同基金数据集进行数据驱动搜索,以实现更好的可发现性和新颖的荟萃分析
- 批准号:
10577377 - 财政年份:2022
- 资助金额:
-- - 项目类别: