Bayesian Meta-Learning for Earth Observation: Better Models with Less Data
用于地球观测的贝叶斯元学习:用更少的数据建立更好的模型
基本信息
- 批准号:2890092
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning has brought significant improvements to pattern recognition systems in the past decade [5]. The three main factors that this success is attributed to are the use of deep neural networks, very large annotated training datasets, and abundant computing resources. However, for many earth observations problems only small training datasets are available. One promising family of machine learning techniques for dealing with limited training data is meta-learning-also known as learning to learn [4]. Given several pattern recognition problems from the same application domain (e.g., object detection in satellite images) these approaches are able to automatically construct new machine learning algorithms that are specialised for the application domain of interest. When deployed on novel tasks from the same domain, these meta-learned algorithms require less data and computing resources in order to train an effective model compared to conventional machine learning approaches.Meta-learning methods are most commonly applied to datasets containing images of people or everyday objects, with the goal of creating learning algorithms that are able to quickly train models on images that contain novel object categories. Such methods are unsuitable for the earth observation problem setting, because of the additional structure in earth observation data compared to conventional everyday photo collections. In addition, in many situations satellites will acquire multiple images of the same region, and there will be considerable overlap in content between these images. This overlapping content violates standard independence assumptions made by machine learning methods. Naively ignoring this structure will yield machine learning models with suboptimal performance, but bespoke meta-learning approaches that instead explicitly take advantage of these temporal and spatial structures in the data have the potential to provide even more powerful models.The objective of this project is to develop a meta-learning framework that is suitable for use with remote sensing applications, thus enabling scientists working with earth observation data to rapidly train accurate models without costly data annotation processes or machine learning expertise. The meta-learning approaches will take advantage of the multiple image modalities commonly captured by satellite imaging systems (e.g., RGB, infrared, multispectral/hyperspectral, range/LiDAR, etc), and leverage additional contextual information of the geographic areas in which datasets are gathered (e.g., latitude and longitude, historical weather patterns, population density, etc) and the relative position of different regions of interest within the same dataset. By combining deep learning with novel Bayesian prediction heads, the framework will be able to take advantage of all the benefits provided by well[1]calibrated uncertainty estimates. Examples of such benefits include easily detecting anomalies [2], being able to fuse information from other sources with the information extracted from satellite images, and active learning [1] to further make the most effective use of limited label annotation resources.
在过去十年中,机器学习为模式识别系统带来了重大改进。这一成功的三个主要因素是深度神经网络的使用,非常大的带注释的训练数据集和丰富的计算资源。然而,对于许多地球观测问题,只有小的训练数据集可用。处理有限训练数据的一个很有前途的机器学习技术家族是元学习——也被称为学习[4]。给定来自同一应用领域的几个模式识别问题(例如,卫星图像中的目标检测),这些方法能够自动构建专门针对感兴趣的应用领域的新机器学习算法。当部署在同一领域的新任务上时,与传统的机器学习方法相比,这些元学习算法需要更少的数据和计算资源来训练有效的模型。元学习方法最常应用于包含人物或日常物品图像的数据集,其目标是创建能够在包含新对象类别的图像上快速训练模型的学习算法。这种方法不适合地球观测问题的设置,因为与传统的日常照片集相比,地球观测数据中有额外的结构。此外,在许多情况下,卫星将获得同一区域的多幅图像,这些图像之间的内容将有相当大的重叠。这种重叠的内容违反了机器学习方法所做的标准独立性假设。天真地忽略这种结构会产生性能欠佳的机器学习模型,但定制的元学习方法可以明确地利用数据中的这些时间和空间结构,从而有可能提供更强大的模型。该项目的目标是开发一种适用于遥感应用的元学习框架,从而使使用地球观测数据的科学家能够快速训练准确的模型,而无需昂贵的数据注释过程或机器学习专业知识。元学习方法将利用卫星成像系统通常捕获的多种图像模式(例如,RGB,红外,多光谱/高光谱,距离/激光雷达等),并利用收集数据集的地理区域的额外上下文信息(例如,纬度和经度,历史天气模式,人口密度等)以及同一数据集中不同感兴趣区域的相对位置。通过将深度学习与新颖的贝叶斯预测头相结合,该框架将能够利用[1]井校准不确定性估计提供的所有优势。这些好处的例子包括轻松检测异常[2],能够将来自其他来源的信息与从卫星图像中提取的信息融合在一起[1],以及主动学习[1],以进一步最有效地利用有限的标签标注资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Meta分析、数据挖掘和网络药理学探讨中成药治疗广泛性焦虑症的疗效、用药规律和机制
- 批准号:2025A01004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Meta建模驱动下CRRT管路凝血预警模型构建及其应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
乳腺癌CDK4/6抑制剂耐药新机制:ACAT2代谢物Meta2靶向调控YAP构象及活性促进其核转位的机制研究
- 批准号:82303834
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗精神病药治疗精神分裂症的西方与中国临床研究证据:建立联合数据库及运用网状meta分析方法
- 批准号:
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:
基于多维网状Meta分析和WGCNA的复方苦参注射液干预胃癌LncRNA临床关联模型构建
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
针刺疗法网状Meta分析报告质量评价及关键方法研究
- 批准号:82004203
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于SCAN meta-GGA泛函从头算分子动力学对过冷水性质反常机制的研究
- 批准号:11874191
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Meta流行病学和大数据监督学习构建针刺试验偏倚风险评估工具和人工智能辅助评估模型研究
- 批准号:81873197
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
大豆蛋白质含量QTL的Meta分析、精细定位与候选基因挖掘鉴定
- 批准号:31701449
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于贝叶斯网状Meta分析的丹参类注射剂治疗不稳定型心绞痛多维临床评价模型构建
- 批准号:81673829
- 批准年份:2016
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Fusing Meta-Learning Systems and Field Observations to Enhance the Simulation of Extreme Winds and their Impact on Civil Infrastructure
职业:融合元学习系统和现场观测,增强极端风及其对民用基础设施影响的模拟
- 批准号:
2339437 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
- 批准号:
2228092 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Personalized Adaptive Learning in Undergraduate Mathematics: A Meta-Analysis
本科数学中的个性化适应性学习:荟萃分析
- 批准号:
2236074 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating learning support for motivational regulation: A meta-motivational perspective
研究动机调节的学习支持:元动机视角
- 批准号:
23K12881 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
FreeML: Engineering Networked Machine Learning via Meta-Free Energy Minimisation
FreeML:通过无元能量最小化进行工程网络机器学习
- 批准号:
EP/W024101/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Examining relationships among teacher professional learning and associated teacher and student outcomes in math and science: A meta-analytic approach to mediation and moderation
检查教师专业学习与数学和科学方面相关教师和学生成果之间的关系:调解和调节的元分析方法
- 批准号:
2300544 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: III: Self-Supervised Graph Neural Network Meta-Learning for Cancer Multi-Omics and Driver Discovery
CRII:III:用于癌症多组学和驱动发现的自监督图神经网络元学习
- 批准号:
2245805 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The Effects of Family Engagement on STEM Learning and Motivation: A Systematic Review and Meta-Analysis
家庭参与对 STEM 学习和动机的影响:系统回顾和荟萃分析
- 批准号:
2300490 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Reinfrocement Learning Algorithm and Intrinsic Rewards for Meta-models
强化学习算法的开发和元模型的内在奖励
- 批准号:
23K18476 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)