CAREER: Enabling Methods for Micro-Cantilever Based Nanotechnology
职业:基于微悬臂梁的纳米技术的实现方法
基本信息
- 批准号:0449310
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-15 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanotechnology is set to revolutionize the human condition through fundamental contribution to scienceand technology. The ability to control and manipulate matter at atomic scales wields an immense potential -especially in areas of biology, material science and physics. Its impact is already evident from the remarkablefeats achieved in the last two decades towards the goals of probing and manipulating matter at atomic scales.The potential of this technology is evident from its proposed use in quantum computing, quantum information,drug discovery and tailoring material with atomic scale specificity. Micro-cantilever based principles, (AtomicForce Microscopy for example) form the main methods by which matter is investigated and manipulated at thenanoscale. Devices based on these principles were the first to demonstrate the feasibility of routine interrogation,control and manipulation of matter at atomic scales. Even though impressive science has resulted with their usesignificant challenges need to be met to tap their full potential. This proposal is geared towards harnessing thispotential thereby enabling the nanotechnology promise to be realized.Under the proposal's goals the PI will exploit a fundamental idea that complex dynamics often manifestthemselves as an abrupt change in the qualitative behavior of the dynamics that can be employed to provideunparalleled resolution in detection of changes in the environment. Theoretical and experimental tools to understandthe complex dynamics and the parameters that control and trigger the abrupt change will be developed.These parameters will be associated with the property being detected.It is evident that robust broadband nanopositioning is a necessity to realize the goal of interrogating andmanipulating matter at the nanoscale. Present methods predominantly employ ad-hoc methods that result inlarge deficits in achievable bandwidth as they fail to address the multi-objective concerns of nonlinear behaviorof piezoelectric actuators, coupling effects, the effects of positioner dynamics on imaging and the uncertain anddiverse environment. The PI will develop a paradigm for robust broadband nanopositioning with emphasis onnano imaging. This paradigm will be utilized in realizing a new state of the art atomic force microscope.The microcantilever force sensor provides for a unique specificity with which bio-affinity between variousmolecules can be unravelled. Based on this feature there are various combinatorial strategies that utilize microcantileversfor drug discovery. Several of the associated objectives fall under the rubric of resource allocationproblems. These optimization problems are non-convex and computationally complex. The PI will develop aunique and attractive theoretical direction for combinatorial resource allocation problems that several groups inthe control community are addressing. The algorithms will be based on the central concepts of the deterministicannealing method used by the data compression community. There will be an emphasis on obtaining globaloptima in the presence of algebraic and dynamic constraints on the resources. Related metrics will be researchedfor the drug discovery problem in collaboration with a molecular biologist.Data in many microcantilever based strategies are stored in predetermined patterns. For example, the nanoarraysstore bio-assays in arrays of cells that are well characterized and in IBM's data storage devices data isstored in the form of bits arranged in a prespecified pattern. During the retrieval of the data the micro-cantilevertip geometry convolves with the data and has the potential to significantly lower the spatial resolution. The PIwill develop methods for image restoration using unique methods that he has pioneered that exploit the patternin the way the data is stored. Such a problem transcends AFM applications and the PI will focus on developinga general framework and specialize it to the AFM applications.Broader Impacts: This proposal brings together researchers from the traditional areas of engineering, mathematics,physics and biology. It is at the confluence of dynamic systems and control theory, control applications,numerical analysis and optimization theory. All of the proposed goals are geared towards nanotechnology -the successful completion of the proposed project will give a good theoretical understanding of the devices andtranslate into huge technological and economic gains. The experimental aspects of the proposed research willbe accomplished in collaboration with Asylum Research, Bioforce Nanosciences Inc. and IBM Research Lab,Zurich. This provides an opportunity for the labs involved to learn the tools and methods of different areas andfor outreach to the industry. The graduate students involved will be trained in a unique interdisciplinary mannerthat exposes them to the diverse set of expertise mentioned. They will be trained both in the theoretical andexperimental aspects as is warranted by the proposal needs.1
纳米技术将通过对科学和技术的根本性贡献来彻底改变人类的状况。在原子尺度上控制和操纵物质的能力拥有巨大的潜力--特别是在生物学、材料科学和物理学领域。它的影响已经从过去20年在原子尺度上探测和操纵物质的目标所取得的显著成就中可见一斑。这项技术的潜力从它在量子计算、量子信息、药物发现和定制具有原子尺度特异性的材料中的拟议应用中可见一斑。基于微悬臂梁的原理(例如原子力显微镜)形成了在纳米尺度上研究和操纵物质的主要方法。基于这些原理的设备第一次证明了在原子尺度上对物质进行常规讯问、控制和操纵的可行性。尽管它们的使用带来了令人印象深刻的科学成果,但要充分挖掘它们的潜力,还需要应对重大挑战。这项建议旨在利用这一潜力,从而使纳米技术的前景成为现实。在该建议的目标下,PI将利用一个基本概念,即复杂的动力学往往表现为动力学质量行为的突然变化,可以用来在检测环境变化时提供无与伦比的分辨率。理论和实验工具将被开发来理解复杂的动力学以及控制和触发突变的参数。这些参数将与被检测的性质相关联。显然,稳健的宽带纳米定位对于实现在纳米尺度上询问和操纵物质的目标是必要的。目前的方法主要采用自组织方法,由于它们不能解决压电致动器的非线性行为、耦合效应、定位器动力学对成像的影响以及不确定和多样化的环境等多目标问题,从而导致可实现带宽的巨大不足。PI将开发一种稳健的宽带纳米定位范例,重点是水鸟成像。这一范例将被用来实现原子力显微镜的新技术。微悬臂力传感器提供了一种独特的专一性,可以用它来揭示各种分子之间的生物亲和力。基于这一特征,利用微悬臂进行药物发现的组合策略有很多。其中几个相关目标属于资源分配问题。这些优化问题是非凸的,计算复杂。PI将为控制社区中的几个小组正在解决的组合资源分配问题开发一种独特而有吸引力的理论方向。这些算法将基于数据压缩领域使用的确定性退火法的核心概念。将强调在存在对资源的代数和动态约束的情况下获得全局最优。将与分子生物学家合作研究药物发现问题的相关指标。许多基于微悬臂的策略中的数据以预定的模式存储。例如,纳米阵列将生物分析存储在表征良好的细胞阵列中,而在IBM的数据存储设备中,数据以按预先指定的模式排列的位的形式存储。在数据检索期间,微悬臂尖端的几何形状与数据卷积在一起,有可能显著降低空间分辨率。这位私人侦探将使用他首创的独特方法来开发图像恢复方法,这种方法利用了数据存储的方式。这样的问题超出了AFM的应用范围,PI将专注于开发一个通用的框架,并将其专门用于AFM应用。广泛的影响:这项建议汇集了来自工程、数学、物理和生物等传统领域的研究人员。它是动力系统和控制理论、控制应用、数值分析和最优化理论的交汇点。所有拟议的目标都是针对纳米技术的--拟议项目的成功完成将使人们从理论上对这些设备有一个很好的了解,并转化为巨大的技术和经济收益。拟议研究的实验方面将与庇护研究公司、Bioforce纳米科学公司和位于苏黎世的IBM研究实验室合作完成。这为相关实验室提供了一个学习不同领域的工具和方法的机会,并为该行业的推广提供了机会。参与培训的研究生将以独特的跨学科方式接受培训,使他们接触到所提到的各种专业知识。他们将接受理论和实验方面的培训,这是提案所需的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Salapaka其他文献
Srinivasa Salapaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Salapaka', 18)}}的其他基金
IUCRC Phase II: U of Illinois at Urbana-Champaign: Center for Advanced Research in Drying (CARD)
IUCRC 第二阶段:伊利诺伊大学厄巴纳-香槟分校:干燥高级研究中心 (CARD)
- 批准号:
2113915 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Learning from cells to create transportation infrastructure at the micron scale
CPS:协同:协作研究:向细胞学习以创建微米级的交通基础设施
- 批准号:
1544635 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Thermal-Noise-Based Mechanisms for Intracellular Motion, with Application to Engineered Systems
合作研究:了解基于热噪声的细胞内运动机制,并应用于工程系统
- 批准号:
1463239 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Tractable Computational Framework for Dynamic Coverage and Clustering
用于动态覆盖和聚类的易于处理的计算框架
- 批准号:
1100257 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Systmes Framework for Microprobe-Based Nanoscale Investigation
基于微探针的纳米级研究系统框架
- 批准号:
0925701 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
A Configurable Platform for Multicantilever High-Throughput Nanoscale Metrology and Manufacturing
用于多悬臂高通量纳米级计量和制造的可配置平台
- 批准号:
0800863 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IMR: MM-1C: Enabling Continual Passive Estimation of Performance of Internet Transfers: Online Measurement and Classification Methods
IMR:MM-1C:实现互联网传输性能的持续被动估计:在线测量和分类方法
- 批准号:
2319511 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enabling ion Mobility Spectrometry/Mass Spectrometry Methods to Study Conformational Dynamics of Protein Systems
使用离子淌度谱/质谱方法来研究蛋白质系统的构象动力学
- 批准号:
2305173 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Enabling new characterisation methods for dynamic systems through the upgrade of 700 MHz solution NMR spectrometer
通过升级 700 MHz 溶液核磁共振波谱仪,为动态系统提供新的表征方法
- 批准号:
BB/W020297/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alliance Grants