Collaborative Research: Understanding Thermal-Noise-Based Mechanisms for Intracellular Motion, with Application to Engineered Systems

合作研究:了解基于热噪声的细胞内运动机制,并应用于工程系统

基本信息

项目摘要

The emerging ability to engineer the simultaneous directed motion of large numbers of small particles, from micrometer size down to large molecules, will have tremendous impact in diverse areas of medicine, electronics and bio-materials. Such directed motion is an integral part of normal intracellular function, where motor proteins convert ambient electrochemical potentials and random thermal agitation into motion and act as tiny cargo haulers. This project will learn from and build upon these biological mechanisms, to create a framework for facilitating robust and efficient collective motion of large numbers of microscale and submicroscale particles. Innovative instrumentation created for this project will probe forces acting on motor proteins. Realization of engineered motion of microscale particles will lead to new materials for electronics and biomedicine. The new analytical techniques will find use in related studies, such as on the role of cellular transport malfunctions in disease. This project will employ the following two Brownian ratchet based approaches to obtain robust and efficient mechanisms for transporting cargo at the microscale: (i) shape optical fields to accurately realize desired potential energy landscapes that enable Brownian ratchet mechanisms where noise enables useful work, and (ii) understand how biological components such as motor proteins and microtubules employ Brownian ractchets to achieve motion, and use these constructs for moving engineered cargo. Optical ratchet mechanisms will be realized using modern control techniques. For studying bio-protein motion, modern controls and systems tools will be used to obtain probes at least an order of magnitude faster than the present state-of-the-art. New modes of investigating motor proteins using optical traps will include tension and force clamps, which will facilitate unambiguous interpretation of molecular motion. Innovative open- and closed-loop control laws for optical force fields will be derived to realize Brownian ratchet based directed motion.
设计大量小颗粒(从微米大小到大分子)同时定向运动的新能力,将对医学、电子和生物材料的各个领域产生巨大影响。这种定向运动是正常细胞内功能的组成部分,其中运动蛋白将环境电化学电位和随机热搅拌转化为运动,并充当微小的货物搬运工。该项目将学习并建立在这些生物机制的基础上,以创建一个框架,促进大量微尺度和亚微尺度粒子的强大和有效的集体运动。为这个项目创造的创新仪器将探测作用在运动蛋白上的力。微尺度粒子的工程运动的实现将为电子和生物医学带来新材料。新的分析技术将在相关研究中得到应用,例如细胞运输功能障碍在疾病中的作用。该项目将采用以下两种基于布朗棘轮的方法,以获得在微观尺度上运输货物的强大而有效的机制:(i)塑造光场以准确实现所需的势能景观,使布朗棘轮机制能够在噪声中实现有用的工作;(ii)了解运动蛋白和微管等生物成分如何使用布朗棘轮来实现运动,并使用这些结构来移动工程货物。光学棘轮机构将采用现代控制技术来实现。为了研究生物蛋白运动,将使用现代控制和系统工具来获得比目前最先进的探针至少快一个数量级的探针。使用光学陷阱研究运动蛋白的新模式将包括张力和力夹,这将有助于对分子运动的明确解释。为实现基于布朗棘轮的定向运动,将推导出创新的光力场开闭环控制律。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasa Salapaka其他文献

Srinivasa Salapaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasa Salapaka', 18)}}的其他基金

IUCRC Phase II: U of Illinois at Urbana-Champaign: Center for Advanced Research in Drying (CARD)
IUCRC 第二阶段:伊利诺伊大学厄巴纳-香槟分校:干燥高级研究中心 (CARD)
  • 批准号:
    2113915
  • 财政年份:
    2021
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Learning from cells to create transportation infrastructure at the micron scale
CPS:协同:协作研究:向细胞学习以创建微米级的交通基础设施
  • 批准号:
    1544635
  • 财政年份:
    2015
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
A Tractable Computational Framework for Dynamic Coverage and Clustering
用于动态覆盖和聚类的易于处理的计算框架
  • 批准号:
    1100257
  • 财政年份:
    2011
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Systmes Framework for Microprobe-Based Nanoscale Investigation
基于微探针的纳米级研究系统框架
  • 批准号:
    0925701
  • 财政年份:
    2009
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
A Configurable Platform for Multicantilever High-Throughput Nanoscale Metrology and Manufacturing
用于多悬臂高通量纳米级计量和制造的可配置平台
  • 批准号:
    0800863
  • 财政年份:
    2008
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
CAREER: Enabling Methods for Micro-Cantilever Based Nanotechnology
职业:基于微悬臂梁的纳米技术的实现方法
  • 批准号:
    0449310
  • 财政年份:
    2005
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 24.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了