CPS: Synergy: Collaborative Research: Learning from cells to create transportation infrastructure at the micron scale

CPS:协同:协作研究:向细胞学习以创建微米级的交通基础设施

基本信息

项目摘要

Cells, to carry out many important functions, employ an elaborate transport network with bio-molecular components forming roadways as well as vehicles. The transport is achieved with remarkable robustness under a very uncertain environment. The main goal of this proposal is to understand how biology achieves such functionality and leveraging the knowledge toward realizing effective engineered transport mechanisms for micron sized cargo. The realization of a robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. A key challenge here is to probe the mechanisms often at the nanometer scale as the bio-molecular components are at tens of nanometer scale. The main tools for addressing these challenges come from an engineering perspective that is guided by existing insights from biology. The proposal will bring together researchers from engineering and biology and it provides an integrated environment for students. Moreover, it is known that an impaired transport mechanism can underlie many neurodegenerative maladies, and as the research here pertains to studying intracellular transport, discoveries hold the potential for shedding light on what causes the impaired transport. Robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials. Daunting challenges from the underlying highly uncertain and complex environments impede enabling robust and efficient transport systems at micro-scale. Motivated by transport in biological cells, this work proposes a robust and efficient engineered infrastructure for transporting micron/molecular scale cargo using biological constructs. For probing and manipulating the transport network, the proposal envisions strategies for coarse and fine resolution objectives at the global and local scales respectively. At the fine scale of monitoring and control, scarce and expensive physical resources such as high resolution sensors have to be shared for interrogation/control of multiple carriers. In this proposal, the principles for joint control, sensor allocation and scheduling of resources to achieve enhanced performance objectives of a high resolution probing tool, will be developed. A modern control perspective forms an essential strategy for managing multiple objectives. At the global scale, entire traffic will be monitored to arrive at real-time and off-line inferences on traffic modalities. Associated principles for dynamically identifying and tracking clusters of carriers and their importance will be built. This categorization of physical elements and their importance will determine the dynamic allocation of computational resources. Associated study of trade-offs will guide a combined strategy for allocation of computational resources and gathering of information on physical elements. Methods based on the reconstruction of graph topologies for reaching inferences that are suited to dynamically related time trajectories for the transportation infrastructure will be developed. The research proposed is transformative as it will enable a new transport paradigm at the cellular scale, which will also provide unique insights into intracellular transport where it will be possible to investigate multiple factors under the same experimental conditions.
为了执行许多重要的功能,细胞采用了复杂的运输网络,其中的生物分子成分形成了道路和车辆。在非常不确定的环境下,传输具有显着的鲁棒性。该提案的主要目标是了解生物学如何实现此类功能,并利用这些知识来实现​​微米级货物的有效工程运输机制。实现能够同时传输许多微米和更小尺寸颗粒的强大基础设施将对医学、药物开发、电子和生物材料等广泛领域产生变革性影响。这里的一个关键挑战是通常在纳米尺度上探测其机制,因为生物分子成分在数十纳米尺度上。应对这些挑战的主要工具来自工程角度,以现有的生物学见解为指导。 该提案将汇集工程和生物学的研究人员,并为学生提供一个综合的环境。此外,众所周知,受损的运输机制可能是许多神经退行性疾病的基础,并且由于此处的研究涉及细胞内运输,因此这些发现有可能揭示导致运输受损的原因。能够同时传输许多微米和更小尺寸颗粒的强大基础设施将对医学、药物开发、电子和生物材料等广泛领域产生变革性影响。 潜在的高度不确定和复杂的环境带来的严峻挑战阻碍了在微观尺度上实现稳健和高效的运输系统。受生物细胞运输的推动,这项工作提出了一种强大而高效的工程基础设施,用于使用生物结构运​​输微米/分子级货物。为了探测和操纵传输网络,该提案设想了分别在全球和局部尺度上实现粗略和精细分辨率目标的策略。在监视和控制的精细范围内,必须共享稀缺且昂贵的物理资源(例如高分辨率传感器)来询问/控制多个载体。在该提案中,将开发联合控制、传感器分配和资源调度的原则,以实现高分辨率探测工具的增强性能目标。现代控制视角构成了管理多个目标的基本策略。在全球范围内,将对整个交通进行监控,以得出对交通方式的实时和离线推断。将建立动态识别和跟踪运营商集群及其重要性的相关原则。物理元素的这种分类及其重要性将决定计算资源的动态分配。相关的权衡研究将指导计算资源分配和物理元素信息收集的组合策略。将开发基于图拓扑重建的方法,以得出适合交通基础设施动态相关时间轨迹的推论。所提出的研究具有变革性,因为它将在细胞尺度上实现一种新的运输范式,这也将为细胞内运输提供独特的见解,从而可以在相同的实验条件下研究多种因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasa Salapaka其他文献

Srinivasa Salapaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasa Salapaka', 18)}}的其他基金

IUCRC Phase II: U of Illinois at Urbana-Champaign: Center for Advanced Research in Drying (CARD)
IUCRC 第二阶段:伊利诺伊大学厄巴纳-香槟分校:干燥高级研究中心 (CARD)
  • 批准号:
    2113915
  • 财政年份:
    2021
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Thermal-Noise-Based Mechanisms for Intracellular Motion, with Application to Engineered Systems
合作研究:了解基于热噪声的细胞内运动机制,并应用于工程系统
  • 批准号:
    1463239
  • 财政年份:
    2015
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
A Tractable Computational Framework for Dynamic Coverage and Clustering
用于动态覆盖和聚类的易于处理的计算框架
  • 批准号:
    1100257
  • 财政年份:
    2011
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
Systmes Framework for Microprobe-Based Nanoscale Investigation
基于微探针的纳米级研究系统框架
  • 批准号:
    0925701
  • 财政年份:
    2009
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant
A Configurable Platform for Multicantilever High-Throughput Nanoscale Metrology and Manufacturing
用于多悬臂高通量纳米级计量和制造的可配置平台
  • 批准号:
    0800863
  • 财政年份:
    2008
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CAREER: Enabling Methods for Micro-Cantilever Based Nanotechnology
职业:基于微悬臂梁的纳米技术的实现方法
  • 批准号:
    0449310
  • 财政年份:
    2005
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant

相似海外基金

CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
  • 批准号:
    1853257
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1645578
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1646235
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1854321
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
  • 批准号:
    1739964
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
  • 批准号:
    1901728
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
  • 批准号:
    1842710
  • 财政年份:
    2018
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
  • 批准号:
    1822332
  • 财政年份:
    2017
  • 资助金额:
    $ 26.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了