Real-Time Electron Dynamics in Nanoscale Structures
纳米结构中的实时电子动力学
基本信息
- 批准号:0454842
- 负责人:
- 金额:$ 16.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoscale electrical structures exhibit numerous interesting phenomena such as the Coulomb blockade or quantum coherence. Such phenomena have traditionally been studied using dc or quasi-dc measurement techniques, even though the underlying electron dynamics take place on much shorter time scales. While such measurements provide a tremendous amount of information, much more could be accessed by studying the dynamics of individual electrons. For instance, temporal correlations in electron tunneling are expected in transport through Coulomb blockade nanostructures, but have never been observed directly. This Individual Investigator Award supports a project that addresses such issues by using a radio-frequency single-electron transistor to study the motion of individual electrons in a quantum dot. Doing so will ultimately allow investigation of electronic correlations and quantum coherence on time scales of tens to hundreds of nanoseconds. A series of experiments on both single and double quantum dots will be undertaken, with the goal of studying electron correlations by means of their counting statistics and probing quantum coherent phenomena on their intrinsic time scales. The techniques used in these experiments are also relevant to the qubit readout problem in quantum computation, and are expected to shed light on the quantum measurement problem in general. This effort involves use of cutting-edge techniques in nanofabrication and radio-frequency characterization, as well as cryogenic and low noise techniques, providing the students involved with skills valuable in either academia or industry.For many nanoscale structures (whose physical dimensions are measured in billionths of a meter), the motion of individual electrons plays an important role in their electrical characteristics. While the roles of individual electrons and the interactions between them have long been recognized, electrical transport in nanostructures is usually probed by measuring the average conductance. Although such measurements have provided a tremendous amount of information, much more could be accessed by studying the dynamics of individual electrons. This Individual Investigator Award supports a project that addresses such issues by using a fast and very sensitive electrometer known as a radio-frequency single electron transistor to study the motion of individual electrons on a semiconductor quantum dot. By observing the motion of individual electrons in a current driven through the dot, for instance, it will be possible to extract additional information about how electrons interact in nanostructures. Because electrons are quantum-mechanical objects, the research will also focus on how the process of observing the electron motion affects the motion itself. This problem, which is also important for measurement of a qubit in quantum computation, is related to the question of how quantum mechanical objects lose their wave-like properties (their quantum coherence) when affected by a macroscopic object. The ability to measure individual electrons on short time scales (millionths of a second or less) should shed new light on such issues. This effort involves use of cutting-edge techniques in nanofabrication and radio-frequency characterization, as well as cryogenic and low noise techniques, providing the students involved with skills valuable in either academia or industry.
纳米尺度的电结构表现出许多有趣的现象,如库仑阻塞或量子相干。 这种现象传统上一直使用直流或准直流测量技术进行研究,即使基本的电子动力学发生在更短的时间尺度上。 虽然这样的测量提供了大量的信息,但通过研究单个电子的动力学可以获得更多的信息。 例如,电子隧穿中的时间相关性预计在通过库仑阻塞纳米结构的传输中,但从未被直接观察到。 这个个人研究者奖支持一个项目,通过使用射频单电子晶体管来研究量子点中单个电子的运动来解决这些问题。 这样做最终将允许在数十到数百纳秒的时间尺度上研究电子相关性和量子相干性。 将对单量子点和双量子点进行一系列实验,目的是通过它们的计数统计来研究电子关联,并在它们的内在时间尺度上探测量子相干现象。 这些实验中使用的技术也与量子计算中的量子比特读出问题有关,并有望在一般情况下阐明量子测量问题。 这项工作涉及使用纳米纤维和射频表征的尖端技术,以及低温和低噪声技术,为参与的学生提供在学术界或工业界有价值的技能。对于许多纳米结构(其物理尺寸以十亿分之一米测量),单个电子的运动在其电气特性中起着重要作用。 虽然单个电子的作用以及它们之间的相互作用早已被认识到,但纳米结构中的电输运通常通过测量平均电导来探测。 虽然这样的测量提供了大量的信息,但通过研究单个电子的动力学可以获得更多的信息。 该个人研究者奖支持一个项目,该项目通过使用快速且非常灵敏的静电计(称为射频单电子晶体管)来研究半导体量子点上单个电子的运动来解决这些问题。 例如,通过观察单个电子在驱动通过点的电流中的运动,将有可能提取关于电子如何在纳米结构中相互作用的额外信息。 由于电子是量子力学物体,研究还将集中在观察电子运动的过程如何影响运动本身。 这个问题对于量子计算中量子比特的测量也很重要,它涉及到量子力学物体在受到宏观物体影响时如何失去其波动性质(量子相干性)的问题。 在短时间尺度(百万分之一秒或更短)上测量单个电子的能力应该为这些问题提供新的线索。这项工作涉及使用纳米纤维和射频表征的尖端技术,以及低温和低噪声技术,为学生提供在学术界或工业界有价值的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Rimberg其他文献
Alexander Rimberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Rimberg', 18)}}的其他基金
Quantum from Classical: Approaching the Single-Quantum Strong Coupling Regime
来自经典的量子:接近单量子强耦合机制
- 批准号:
1807785 - 财政年份:2018
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
Quantum from Classical: Creation of Quantum States of Motion in Nanomechanical Resonators
经典中的量子:在纳米机械谐振器中创建量子运动态
- 批准号:
1507400 - 财政年份:2015
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
Quantum and Classical Phenomena in Electrical and Mechanical Resonators
机电谐振器中的量子和经典现象
- 批准号:
1104821 - 财政年份:2011
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
Quantum Noise and Backaction in Semi- and Superconducting Nanostructures
半导体和超导纳米结构中的量子噪声和反作用
- 批准号:
0804488 - 财政年份:2008
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Single Spin Measurement for Quantum Information Processing
ITR 协作研究:量子信息处理的单自旋测量
- 批准号:
0454914 - 财政年份:2004
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
Real-Time Electron Dynamics in Nanoscale Structures
纳米结构中的实时电子动力学
- 批准号:
0242907 - 财政年份:2003
- 资助金额:
$ 16.22万 - 项目类别:
Standard Grant
ITR Collaborative Research: Single Spin Measurement for Quantum Information Processing
ITR 协作研究:量子信息处理的单自旋测量
- 批准号:
0325501 - 财政年份:2003
- 资助金额:
$ 16.22万 - 项目类别:
Continuing grant
Effect of the Electrodynamic Environment on Electrical Transport in Nanoscale Structures
电动力环境对纳米结构电传输的影响
- 批准号:
9974365 - 财政年份:1999
- 资助金额:
$ 16.22万 - 项目类别:
Continuing grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
- 批准号:
23H00238 - 财政年份:2023
- 资助金额:
$ 16.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
- 批准号:
22K14653 - 财政年份:2022
- 资助金额:
$ 16.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Real time optimization of electron-based fragmentation for middle and top-down proteomics in mass spectrometry
质谱中中自上而下蛋白质组学基于电子的碎片实时优化
- 批准号:
10081127 - 财政年份:2020
- 资助金额:
$ 16.22万 - 项目类别:
POLYMERIC ELECTRON PARAMAGNETIC RESONANCE PROBES FOR REAL-TIME MONITORING OF TISSUE VASCULARIZATION
用于实时监测组织血管化的聚合物电子顺磁共振探头
- 批准号:
9811147 - 财政年份:2019
- 资助金额:
$ 16.22万 - 项目类别:
Development of a high sensitivity optical microscopy based on Nüvü's electron-multiplying CCD camera for real-time imaging of sub-threshold membrane potential dynamics
开发基于 Nüvü 电子倍增 CCD 相机的高灵敏度光学显微镜,用于亚阈值膜电位动态的实时成像
- 批准号:
530850-2018 - 财政年份:2018
- 资助金额:
$ 16.22万 - 项目类别:
Engage Grants Program
Towards real-time image processing in single-particle electron microscopy
单粒子电子显微镜中的实时图像处理
- 批准号:
DE170100701 - 财政年份:2017
- 资助金额:
$ 16.22万 - 项目类别:
Discovery Early Career Researcher Award
Development of a global and real-time monitoring method for electron density profiles of the lower ionosphere by using the VLF/LF wave propagation
利用VLF/LF波传播开发低电离层电子密度分布的全局实时监测方法
- 批准号:
17K06295 - 财政年份:2017
- 资助金额:
$ 16.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Atomic Attosecond Spectroscopy: Monitor and Control of Electron Correlation in Real Time
理论原子阿秒能谱:电子相关性的实时监测和控制
- 批准号:
1607588 - 财政年份:2016
- 资助金额:
$ 16.22万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Scanning Electron Microscope for Real-time Studies of Novel Materials Processes and Functionality
MRI:获取扫描电子显微镜以实时研究新型材料工艺和功能
- 批准号:
1625671 - 财政年份:2016
- 资助金额:
$ 16.22万 - 项目类别:
Standard Grant
Polymeric electron paramagnetic resonance probes for real-time monitoring of tissue vascularization
用于实时监测组织血管化的聚合物电子顺磁共振探针
- 批准号:
9182425 - 财政年份:2016
- 资助金额:
$ 16.22万 - 项目类别: