Faradaic Micro-Fluidic Devices for Complex Fluids

用于复杂流体的法拉第微流体装置

基本信息

  • 批准号:
    0454956
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-04-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT - 0454956A new electro-kinetic means of transporting, metering, controlling, separating and concentrating liquid and bio-particles in a micro-fluidic device will be investigated. Unlike existing direct-current (DC) and alternating-current (AC) electro-kinetic techniques, this Faradaic AC Electro-kinetic (FACE) mechanism produces large quasi-equilibrium polarization of microfabricated electrodes via transient Faradaic electrode reactions to drive fluid and particle motions with speeds in excess of 1 cm/s in micro-channels, representingone of the most powerful nonmechanical micro-pump. Due to the high-frequency ( 100 kHz) AC field employed, the transient reactions do not produce bubbles and ionic contaminants in the micro-channels. It is also not as damaging to DNA, proteins and bio-particles as DC fields. A variety of new single-phase and multi-phase electro-kinetic phenomena, with qualitatively different flow topologies and instabilities, have been observed. The richness of the flow topologies is attributed to two fundamental Faradaic polarization mechanisms that generate a localized pressure sink and a tangential slip velocity. The proposed project will carry out a fundamental analysis of this new electro-kinetic mechanism and delineate/quantify its various flow properties. This fundamental study will allow us to optimize the design of micro-fluidic components based on this new mechanism, sometimes by harnessing the new phenomena. The studies include a matched asymptotic analysis to replace the fast (us) reaction and capacitive charging dynamics within the nm-sized double layer with time-averaged effective electrostatic and slip boundary conditions, thus simplifying the relevant multi-scale numerical studies. An analysis of tangential conduction and charge accumulation at geometric singularities, which are believed to drive some of the anomalous flows, will also be carried out to fully delineate the complex spatio-temporal electrode polarization dynamics. The high shear rate afforded by the strong flow causes many bio-particle segregation and aggregation phenomena, which will be studied in detail to produce effective particle-fluid separation strategies, bio-particle and virus for fluorescent tag detection. Microfabricated AC electro-magnets will produce transverse Lorentz forces to generate spiral flows as well as the current vortex and linear FACE flows. The proposed fundamental work will allow us to fruitfully understand and exploit this new FACE mechanism to build a functional micro-fluidic technology with optimized electrode geometries and applied electric fields.Educational Impact: The proposed work will provide graduate students with an unusually rich educational experience. It combines fundamental scientific studies of new physical phenomena with engineering design projects to produce nearly commercializable micro-fluidic devices. It involves sophisticated theoretical and numerical analyses, as well as state-of-the-art fabrication technology. In the last four years, our laboratory has placed 5 group members in tenure-track faculty positions at major U.S. research universities, two in leading industrial research centers and two undergraduate members at top graduate programs. Four others will be seeking tenure-track positions shortly. We expect the proposed project to make a comparable educational impact.Scientific and Technological Impact: Recent fundamental scientific research on chip-scale analytical techniques for viral assays, bacteria detection, chemical chromatography, etc. has and will continue to spur a major technological advance in the medical, environmental and national security industries. A major component that is still under development is micro-fluidics: the ability to precisely transport, mix and manipulate fluids and, more importantly, micro- and nanoscale bio-particles within the chip micro-channels. Electro-kinetics is one approach that utilizes mature micro-fabrication technology to imbed micro-electrodes to produce the desirable microfluidics. This project investigates a new electro-kinetic mechanism, first revealed by the group, that promises to be more powerful, reliable and sensitive than other micro-fluidic components. The proposed work will lay the fundamental groundwork for the first functional micro-fluidic components based on this new mechanism.
摘要-0454956将研究一种在微流体装置中输送、计量、控制、分离和浓缩液体和生物颗粒的新电动手段。与现有的直流(DC)和交流(AC)电动技术不同,这种法拉第交流电动(FACE)机制通过瞬态法拉第电极反应产生微加工电极的大的准平衡极化,以驱动微通道中的流体和颗粒以超过1 cm/s的速度运动,代表了最强大的非机械微泵之一。由于采用高频(100 kHz)AC场,瞬态反应不会在微通道中产生气泡和离子污染物。它也不像DC场那样对DNA,蛋白质和生物颗粒造成损害。已经观察到各种新的单相和多相电动现象,具有不同的流动拓扑结构和不稳定性。流动拓扑结构的丰富性归因于两种基本的法拉第极化机制,它们产生局部压降和切向滑动速度。拟议的项目将对这种新的电动机制进行基本分析,并描述/量化其各种流动特性。这项基础研究将使我们能够优化基于这种新机制的微流体组件的设计,有时是通过利用新现象。这些研究包括一个匹配的渐近分析,以取代快速(US)反应和电容充电动力学与时间平均有效的静电和滑移边界条件的纳米尺寸的双层,从而简化了相关的多尺度数值研究。切向传导和电荷积累的几何奇点,这被认为是驱动一些异常流的分析,也将进行充分描绘复杂的时空电极极化动力学。由强流提供的高剪切速率引起许多生物颗粒分离和聚集现象,将详细研究这些现象以产生有效的颗粒-流体分离策略,用于荧光标签检测的生物颗粒和病毒。微加工交流电磁铁将产生横向洛伦兹力,以产生螺旋流以及电流涡流和线性FACE流。建议的基础工作将使我们能够富有成效地理解和利用这种新的FACE机制,以建立一个功能性的微流体技术与优化的电极几何形状和施加的电场。教育影响:建议的工作将为研究生提供异常丰富的教育经验。它将新物理现象的基础科学研究与工程设计项目相结合,以生产几乎可商业化的微流体设备。它涉及复杂的理论和数值分析,以及最先进的制造技术。在过去的四年里,我们的实验室已经在美国主要的研究型大学,两个领先的工业研究中心和两个本科生成员在顶级研究生课程的终身教职的5组成员。另外四个人将很快寻求终身职位。科学和技术影响:最近在用于病毒检测、细菌检测、化学色谱等的芯片级分析技术方面的基础科学研究已经并将继续推动医疗、环境和国家安全行业的重大技术进步。仍在开发中的一个主要组成部分是微流体:精确运输,混合和操纵流体的能力,更重要的是,芯片微通道内的微米和纳米级生物颗粒。电动力学是一种利用成熟的微制造技术来嵌入微电极以产生期望的微流体的方法。 该项目研究了一种新的电动机制,该机制首先由该小组揭示,有望比其他微流体组件更强大,可靠和灵敏。这项工作将为基于这种新机制的第一个功能性微流体组件奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hsueh-Chia Chang其他文献

Peritoneal cavity-derived small extracellular vesicles from aged tumor-naïve hosts promote ovarian cancer adhesion and invasion
  • DOI:
    10.1186/s12964-025-02273-1
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Reihaneh Safavi-Sohi;Jeff Johnson;Yueying Liu;Jing Yang;Tyvette S. Hilliard;Zhikun Wang;Christopher Barile;Josh Mijares;Ceming Wang;Hsueh-Chia Chang;Rebecca J. Whelan;M. Sharon Stack
  • 通讯作者:
    M. Sharon Stack
Elastic Properties of DNA as the Entropic Driving Force for Dehybridization Transitions
  • DOI:
    10.1016/j.bpj.2017.11.523
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sebastian Sensale;Hsueh-Chia Chang;Zhangli Peng
  • 通讯作者:
    Zhangli Peng
Chapter 13 – Drop Formation on a Coated Vertical Fiber
  • DOI:
    10.1016/s1383-7303(02)80036-9
  • 发表时间:
    2002-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsueh-Chia Chang
  • 通讯作者:
    Hsueh-Chia Chang
Wave evolution on a falling film
  • DOI:
    10.1146/annurev.fl.26.010194.000535
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    27.7
  • 作者:
    Hsueh-Chia Chang
  • 通讯作者:
    Hsueh-Chia Chang
Chapter 4 – Experiments and Numerical Simulation
  • DOI:
    10.1016/s1383-7303(02)80027-8
  • 发表时间:
    2002-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsueh-Chia Chang
  • 通讯作者:
    Hsueh-Chia Chang

Hsueh-Chia Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hsueh-Chia Chang', 18)}}的其他基金

I-Corps: A Low-Cost, Rapid, Sensitive, PCR-Free Pathogen Diagnostics Platform
I-Corps:低成本、快速、灵敏、无 PCR 的病原体诊断平台
  • 批准号:
    1313543
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Nanomembrane-Based Nucleic Acid Sensing Platform
基于纳米膜的核酸传感平台
  • 批准号:
    1065652
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Effects of Local Interfacial and Flow Dynamics on Foam Drainage and Coarsening
局部界面和流动动力学对泡沫排水和粗化的影响
  • 批准号:
    0089162
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electrokinetic Flow Design for Micro-Laboratories on a Chip
芯片上微型实验室的动电流设计
  • 批准号:
    9980745
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Wave Enhanced Heat and Mass Transfer
波增强传热传质
  • 批准号:
    9708925
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics and Control of Complex Patterns in Distributed Chemical Systems
分布式化学系统中复杂模式的非线性动力学和控制
  • 批准号:
    9522277
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Thermal Front Propagation of Fast Igniting Catalytic Converters
快速点火催化转化器的热锋传播
  • 批准号:
    9200210
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Dynamics and Control of Complex Patterns in Disturbed Chemical Systems
受干扰化学系统中复杂模式的非线性动力学和控制
  • 批准号:
    9112977
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Application of Nonlinear Techniques to Control and Fluid Dynamics: PRC Scientist Supplement
总统青年研究员奖:非线性技术在控制和流体动力学中的应用:《中华人民共和国科学家副刊》
  • 批准号:
    8796298
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award: Application of Nonlinear Techniques to Control and Fluid Dynamics
总统青年研究员奖:非线性技术在控制和流体动力学中的应用
  • 批准号:
    8451116
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Micro-LED芯片(模组)显示材料的研发及应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro-LED片上集成量子点像素光波导结 构设计与制造研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
车载领域Micro-LED显示技术研发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro LED晶圆级缺陷在线检测装备研发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Micro-LED全彩化用钙钛矿纳米晶的稳定机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
金属氧化物TFT有源模拟PWM驱动Micro-LED显示研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于非辐射能量传递和胶体电流体微喷印的Micro-LED红光色转换技术
  • 批准号:
    62374142
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
Mini/Micro-LED显示器件表面功能结构冷冻磨切加工机理及光学性能研究
  • 批准号:
    52375426
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向AR/VR应用的III族氮化物有源驱动micro-LED显示阵列
  • 批准号:
    62375006
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效率全彩色micro-LED显示转移打印及性能研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Programmable micro/nano-fluidic based platform for high-throughput and large scale single-molecule analysis
基于可编程微/纳米流体的平台,用于高通量和大规模单分子分析
  • 批准号:
    RGPIN-2016-04943
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
NSF-DFG Confine: Chemically-induced phoretic flow, or how to turn a curtain of light into virtual micro-fluidic boundaries
NSF-DFG Confine:化学诱导泳流,或如何将光幕转变为虚拟微流体边界
  • 批准号:
    2223481
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Programmable micro/nano-fluidic based platform for high-throughput and large scale single-molecule analysis
基于可编程微/纳米流体的平台,用于高通量和大规模单分子分析
  • 批准号:
    RGPIN-2016-04943
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of a gas-liquid-solid multiphase flow simulation method for evaluation of micro-fluidic devices
开发用于评估微流体装置的气-液-固多相流模拟方法
  • 批准号:
    20K04297
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel Robust Laundry Enzymes for Cold Wash Applications by both rational and directed evolution and using micro-fluidic approaches
通过合理和定向进化并使用微流体方法开发用于冷洗应用的新型强力洗衣酶
  • 批准号:
    2457860
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Programmable micro/nano-fluidic based platform for high-throughput and large scale single-molecule analysis
基于可编程微/纳米流体的平台,用于高通量和大规模单分子分析
  • 批准号:
    RGPIN-2016-04943
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Programmable micro/nano-fluidic based platform for high-throughput and large scale single-molecule analysis
基于可编程微/纳米流体的平台,用于高通量和大规模单分子分析
  • 批准号:
    RGPIN-2016-04943
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase II: Micro-Fluidic LiDAR for Autonomous Vehicles
SBIR 第二阶段:用于自动驾驶汽车的微流控激光雷达
  • 批准号:
    1853156
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Micro-Fluidic LiDAR for Autonomous Vehicles
SBIR 第一阶段:用于自动驾驶汽车的微流控激光雷达
  • 批准号:
    1747116
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了