FRG: Asymptotic and probabilistic methods in geometric group theory
FRG:几何群论中的渐近和概率方法
基本信息
- 批准号:0455906
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main theme of this project is amenability and related concepts(Kazhdan property T, property tau, unitarizability, etc.) and itsapplications in different areas of mathematics from number theory totopology and functional analysis. In particular, the PIs willconcentrate on the following problems: * Classification of amenable groups and associative algebras, * Amenability of Golod-Shafarevich groups and related problems in3-dimensional topology and number theory, * Expander graphs, property tau for lattices in SL(2,C),probabilistic methods in group theory, * The Dixmier Unitarizability problem, * Constructing new examples of finitely presented groups withproperty T, * Linearity of discrete and pro-p-groups, * Asymptotic properties of discrete groups.The PIs are going to organize several conferences and workshops on differentaspects of the projects. The NSF grant will support several graduatestudents and postdoctoral fellows working undertheir supervision. Group theory was born as the theory of symmetry. The work of Gauss,Abel, Galois, Lie and others showed that groups of symmetries carry essential information about solvability of algebraic anddifferential equations. Group theory plays crucial role in many areas of mathematics and physics. Moreover, recent advances in group theory showed that many areas of mathematics are closely related. In turn, group theory has benefited tremendously from its connections with other areas. About 80 years ago, von Neumann, Banach and Tarski introduced the concept of amenabile group and connected it with basic questions like "Can one assign a weight to any set of points in our space so that the weight is invariant under all symmetries of the space?". The PIs will explore various aspects of amenability of groups and algebras, and deep connections between amenabile groups, number theory and topology.
该项目的主题是适宜性及其相关概念(Kazhdan Property T、Property tau、Unitarizable等)。以及它在从数论到拓扑学和泛函分析的不同数学领域中的应用。特别是,PI将集中在以下问题上:*服从群和结合代数的分类,*Golod-Shafarevich群的可选性和三维拓扑和数论中的相关问题,*扩展图,SL(2,C)中格子的性质tau,群论中的概率方法,*可分解性问题,*构造具有性质T的有限表示群的新例子,*离散群和准p-群的线性,*离散群体的渐近性质。私人投资促进机构将就项目的不同方面组织几个会议和工作坊。NSF的拨款将支持在他们的指导下工作的几名毕业生和博士后研究员。群论诞生于对称论。Gauss、Abel、Galois、Lie等人的工作表明,对称群承载着有关代数方程和微分方程的可解性的基本信息。群论在数学和物理的许多领域发挥着至关重要的作用。此外,群论的最新进展表明,数学的许多领域是密切相关的。反过来,群体理论从它与其他领域的联系中受益匪浅。大约80年前,von Neumann,Banach和Tarski引入了amenabile群的概念,并将其与一些基本问题联系在一起,例如:一个人能否给我们空间中的任何一组点赋权,使其在空间的所有对称下是不变的?PI将探索群和代数的适应性的各个方面,以及适应性群、数论和拓扑学之间的深层次联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efim Zelmanov其他文献
Finite presentability of universal central extensions of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"><msub><mrow><mi mathvariant="fraktur">sl</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>
- DOI:
10.1016/j.jalgebra.2020.09.016 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Efim Zelmanov;Zezhou Zhang - 通讯作者:
Zezhou Zhang
On the growth of algebras, semigroups, and hereditary languages
- DOI:
10.1007/s00222-020-01017-x - 发表时间:
2020-11-12 - 期刊:
- 影响因子:3.600
- 作者:
Jason Bell;Efim Zelmanov - 通讯作者:
Efim Zelmanov
On Lie Isomorphisms of Rings
- DOI:
10.1007/s00009-025-02844-z - 发表时间:
2025-04-26 - 期刊:
- 影响因子:1.200
- 作者:
Oksana Bezushchak;Iryna Kashuba;Efim Zelmanov - 通讯作者:
Efim Zelmanov
Group Theory and Representation Theory
- DOI:
10.1007/s10013-023-00643-1 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Robert Guralnick;Gabriel Navarro;Hoang Xuan Phu;Efim Zelmanov - 通讯作者:
Efim Zelmanov
Nil subrings of endomorphism rings of finitely generated modules over affine PI-rings
- DOI:
10.1016/j.jalgebra.2010.06.005 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:
- 作者:
Robert M. Guralnick;Lance W. Small;Efim Zelmanov - 通讯作者:
Efim Zelmanov
Efim Zelmanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efim Zelmanov', 18)}}的其他基金
Identities in Algebras and Pro-P Groups
代数和 Pro-P 群中的恒等式
- 批准号:
1601920 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Infinite dimensional algebras and pro-p groups
无限维代数和 pro-p 群
- 批准号:
1302096 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Asyptoptic and Combinatorial Methods in Infinite Groups and Algebras
无限群和代数中的渐近方法和组合方法
- 批准号:
0758487 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Asymptotic Methods in Infinite Groups and Algebras
无限群和代数中的渐近方法
- 批准号:
0500568 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: P-groups & Infinite Dimensional Lie Algebras
数学科学:P 群
- 批准号:
9212608 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
- 批准号:
22KJ1933 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic analysis of online training algorithms in deep learning
深度学习在线训练算法的渐近分析
- 批准号:
2879209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Asymptotic approximation of the large-scale structure of turbulence in axisymmetric jets: a first principle jet noise prediction method
轴对称射流中湍流大尺度结构的渐近逼近:第一原理射流噪声预测方法
- 批准号:
EP/W01498X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




