Gauge theories in (2+1) dimensions and quantum Hall effect in higher dimensions
(2 1) 维度中的规范理论和更高维度中的量子霍尔效应
基本信息
- 批准号:0457304
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-11-15 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last few years the PI and collaborators, have developed a gauge invariant Hamiltonian analysis of Yang-Mill theory in two spatial dimensions. Several interesting results were derived such as an exact expression for the integration measure on the gauge invariant configuration space, an expression for the vacuum wave and an analytic formula for the string tension. Motivated by recent renewed interest in this topic, the PI proposes to analyze higher order corrections to the calculated string tension, investigate screening of adjoint matter versus confinement in this frame work and apply this Hamiltonian formulation to study issues of dynamical mass generation in (2+1) dimensional QED with massless fermions.
在过去的几年里,PI和合作者已经在两个空间维度上发展了杨-米尔理论的规范不变哈密顿分析。得到了规范不变位形空间上积分测度的精确表达式、真空波的表达式和弦张力的解析公式等几个有趣的结果。由于最近对该主题的重新关注,PI提出分析计算弦张力的高阶修正,研究在该框架下伴随物质与约束的筛选,并应用该哈密顿公式研究(2+1)维无质量费米子QED中的动态质量生成问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitra Karabali其他文献
Yang–Mills theory in <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mn>2</mn><mo>+</mo><mn>1</mn></math> dimensions: Coupling of matter fields and string-breaking effects
- DOI:
10.1016/j.nuclphysb.2007.09.007 - 发表时间:
2008-02-11 - 期刊:
- 影响因子:
- 作者:
Abhishek Agarwal;Dimitra Karabali;V.P. Nair - 通讯作者:
V.P. Nair
Low-energy effective action for closed bosonic strings on group manifolds
- DOI:
10.1016/0550-3213(87)90589-x - 发表时间:
1987-01-01 - 期刊:
- 影响因子:
- 作者:
Dimitra Karabali;Howard J. Schnitzer;Kyriakos Tsokos - 通讯作者:
Kyriakos Tsokos
The Hamiltonian approach to Yang–Mills <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mo stretchy="false">(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></math>: Expansion scheme and corrections to string tension
- DOI:
10.1016/j.nuclphysb.2009.07.019 - 发表时间:
2010-01-11 - 期刊:
- 影响因子:
- 作者:
Dimitra Karabali;V.P. Nair;Alexandr Yelnikov - 通讯作者:
Alexandr Yelnikov
Dimitra Karabali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitra Karabali', 18)}}的其他基金
RUI: Nonperturbative Analyses in Field Theory
RUI:场论中的非微扰分析
- 批准号:
1915053 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
RUI: Studies in Field Theory: Casimir Effect, Yang-Mills Theory
RUI:场论研究:卡西米尔效应、杨米尔斯理论
- 批准号:
1417562 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
RUI: Investigations On Gauge Theories and Casimir Effect
RUI:规范理论和卡西米尔效应的研究
- 批准号:
1068172 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RUI: Studies on gauge theories and quantum Hall fluids
RUI:规范理论和量子霍尔流体研究
- 批准号:
0758008 - 财政年份:2008
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
RUI: Nonperturbative Aspects of Yang-Mills Theories in (2+1) Dimensions
RUI:(2 1) 维中杨米尔斯理论的非微扰方面
- 批准号:
9970724 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
- 批准号:
24K00237 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
- 批准号:
2338690 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant