RUI: Studies on gauge theories and quantum Hall fluids

RUI:规范理论和量子霍尔流体研究

基本信息

项目摘要

The understanding of the non-perturbative aspects of gauge theories, such as confinement and the mass gap, are two outstanding problems in theoretical physics. The PI and collaborators have developed a Hamiltonian approach for Yang-Mills theories in (2+1) dimensions The PI proposes to further study higher order corrections to the calculated string tension and the corresponding effect on the Casimir scaling rule. She hopes to improve preliminary analytic results on the glueball spectrum of the theory, and apply these ideas to study deconfinement at finite temperatures. Another project that the PI will investigate is the Quantum Hall effect (QHE) in higher dimensions. It is hoped that this research will provide a rich framework for studying new ideas on fuzzy spaces, noncommutative field theories, matrix models and bosonization in higher dimensions. The completion of this project is expected to contribute considerably to our understanding of the nonperturbative aspects of gauge theories; the emerging connections between QHE, fuzzy spaces, noncommutative field theories, matrix models and bosonization in higher dimensions open up new interdisciplinarypaths between different areas such as quantum field theory, string theory, condensed matter physics and mathematical physics. Lehman College, CUNY, is a predominantly undergraduate institution with a large number of female (72%) and minority (78%) students. The PI acts as a role model for the students and is very involved in curriculum development. She has developed a course on the Physics of Sound which has attracted many Music Majors at the College as well as Speech Majors.
对规范理论的非微扰方面的理解,如禁闭和质量间隙,是理论物理中的两个突出问题。PI和合作者发展了(2+1)维杨-米尔斯理论的哈密顿方法。PI建议进一步研究对计算的弦张力的高阶修正以及相应的对Casimir标度规则的影响。她希望改进该理论胶球光谱的初步分析结果,并将这些想法应用于研究有限温度下的去禁闭。PI将研究的另一个项目是更高维度的量子霍尔效应(QHE)。希望这项研究将为研究模糊空间、非对易场论、矩阵模型和高维玻色化等新思想提供一个丰富的框架。这个项目的完成将有助于我们理解规范理论的非微扰方面;QHE、模糊空间、非对易场论、矩阵模型和高维玻色化之间的新联系开辟了不同领域之间的新的跨学科途径,如量子场论、弦理论、凝聚态物理和数学物理。纽约州立大学雷曼学院是一所以本科生为主的院校,有大量女性(72%)和少数族裔(78%)学生。PI作为学生的榜样,非常参与课程开发。她开发了一门关于声音物理的课程,这门课程吸引了学院许多音乐专业的学生以及演讲专业的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitra Karabali其他文献

Low-energy effective action for closed bosonic strings on group manifolds
  • DOI:
    10.1016/0550-3213(87)90589-x
  • 发表时间:
    1987-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dimitra Karabali;Howard J. Schnitzer;Kyriakos Tsokos
  • 通讯作者:
    Kyriakos Tsokos

Dimitra Karabali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitra Karabali', 18)}}的其他基金

RUI: Nonperturbative Analyses in Field Theory
RUI:场论中的非微扰分析
  • 批准号:
    1915053
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
RUI: Studies in Field Theory: Casimir Effect, Yang-Mills Theory
RUI:场论研究:卡西米尔效应、杨米尔斯理论
  • 批准号:
    1417562
  • 财政年份:
    2014
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
RUI: Investigations On Gauge Theories and Casimir Effect
RUI:规范理论和卡西米尔效应的研究
  • 批准号:
    1068172
  • 财政年份:
    2011
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Gauge theories in (2+1) dimensions and quantum Hall effect in higher dimensions
(2 1) 维度中的规范理论和更高维度中的量子霍尔效应
  • 批准号:
    0457304
  • 财政年份:
    2005
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
RUI: Topics in Planar Physics
RUI:平面物理主题
  • 批准号:
    0140262
  • 财政年份:
    2002
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
RUI: Nonperturbative Aspects of Yang-Mills Theories in (2+1) Dimensions
RUI:(2 1) 维中杨米尔斯理论的非微扰方面
  • 批准号:
    9970724
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant

相似海外基金

Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
  • 批准号:
    23K03396
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in gauge theoretic deformation invariants and their generating functions
规范理论变形不变量及其生成函数的研究
  • 批准号:
    21K03246
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Loop studies of emergent symmetries in gauge theories
规范理论中涌现对称性的循环研究
  • 批准号:
    2113027
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
Theoretical studies on the realization of a p-wave superfluid Fermi gas by using a synthetic gauge field
利用合成规范场实现p波超流体费米气体的理论研究
  • 批准号:
    25400418
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of topological phases based on lattice gauge theories
基于晶格规范理论的拓扑相研究
  • 批准号:
    25400388
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of statistical inference procedures in gauge capability studies
量规能力研究中统计推断程序的调查
  • 批准号:
    400231-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 9万
  • 项目类别:
    University Undergraduate Student Research Awards
Direct confirmation of the gauge/gravity correspondence and its application to the studies of the space-time structure
规范/重力对应关系的直接确认及其在时空结构研究中的应用
  • 批准号:
    20540286
  • 财政年份:
    2008
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies for gauge-Higgs unification theories and quark-lepton generation structure
规范-希格斯统一理论和夸克-轻子产生结构的研究
  • 批准号:
    16540258
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Correspondence between Classical and Quantum Dynamical Systems
经典动力系统与量子动力系统对应关系的研究
  • 批准号:
    14540210
  • 财政年份:
    2002
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Nonperturbative Effects in Superstring Theory Using Matrix Models
使用矩阵模型研究超弦理论中的非微扰效应
  • 批准号:
    13135224
  • 财政年份:
    2001
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了