RUI: Topics in Planar Physics
RUI:平面物理主题
基本信息
- 批准号:0140262
- 负责人:
- 金额:$ 8.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-11-15 至 2006-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves research on two different topics in (2+1)-dimensional theories. Increased tractability of these lower dimensional models allows explicit calculations that cannot be done in higher dimensional theories. These calculations yield important insights that may also be relevant for higher dimensional theories.1) Nonperturbative aspects of gauge theories.The PI and collaborators have developed a special matrix parametrization for the gauge fields in order to develop a gauge invariant Hamiltonian analysis of Yang-Mills theory in (2+1) dimensions. Recent results will be extended to analyze higher order corrections to the calculated string tension, investigate screening versus confinement in this framework, and include quark degrees of freedom.2) Noncommutative theories and quantum Hall effect (QHE).There has recently appeared an interesting connection between QHE and noncommutative field theory. Previous studies by the PI and collaborator indicate that a (noncommutative) finite matrix model proposed by Polychronakos to describe fractional quantum Hall fluids of finite extent (for a filling fracton of 1/m) does not agree at small distances with standard wavefunctions and calls into question the matrix model approach. The correspondence between the matrix model and standard approaches will be explored and extended to include more general filling factors and electron degrees of freedom.
这个项目涉及对(2+1)维理论中两个不同主题的研究。这些低维模型的可处理性增加,允许进行在高维理论中无法完成的显式计算。这些计算产生了重要的见解,可能也与高维理论有关。1)规范理论的非微扰方面。PI和合作者开发了一种特殊的规范场矩阵参数化,以便在(2+1)维中发展杨-Mills理论的规范不变哈密顿分析。最近的结果将被扩展到分析计算的弦张力的高阶修正,在这个框架中研究屏蔽与限制,并包括夸克的自由度。2)非对易理论和量子霍尔效应(QHE)。最近在QHE和非对易场论之间出现了有趣的联系。PI和合作者以前的研究表明,Polychronakos提出的描述有限范围(填充分数为1/m)分数量子霍尔流体的(非对易)有限矩阵模型在小距离上与标准波函数不一致,并对矩阵模型方法提出了质疑。将探索矩阵模型和标准方法之间的对应关系,并将其扩展到包括更一般的填充因子和电子自由度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitra Karabali其他文献
Yang–Mills theory in <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mn>2</mn><mo>+</mo><mn>1</mn></math> dimensions: Coupling of matter fields and string-breaking effects
- DOI:
10.1016/j.nuclphysb.2007.09.007 - 发表时间:
2008-02-11 - 期刊:
- 影响因子:
- 作者:
Abhishek Agarwal;Dimitra Karabali;V.P. Nair - 通讯作者:
V.P. Nair
Low-energy effective action for closed bosonic strings on group manifolds
- DOI:
10.1016/0550-3213(87)90589-x - 发表时间:
1987-01-01 - 期刊:
- 影响因子:
- 作者:
Dimitra Karabali;Howard J. Schnitzer;Kyriakos Tsokos - 通讯作者:
Kyriakos Tsokos
The Hamiltonian approach to Yang–Mills <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mo stretchy="false">(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></math>: Expansion scheme and corrections to string tension
- DOI:
10.1016/j.nuclphysb.2009.07.019 - 发表时间:
2010-01-11 - 期刊:
- 影响因子:
- 作者:
Dimitra Karabali;V.P. Nair;Alexandr Yelnikov - 通讯作者:
Alexandr Yelnikov
Dimitra Karabali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitra Karabali', 18)}}的其他基金
RUI: Nonperturbative Analyses in Field Theory
RUI:场论中的非微扰分析
- 批准号:
1915053 - 财政年份:2019
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
RUI: Studies in Field Theory: Casimir Effect, Yang-Mills Theory
RUI:场论研究:卡西米尔效应、杨米尔斯理论
- 批准号:
1417562 - 财政年份:2014
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
RUI: Investigations On Gauge Theories and Casimir Effect
RUI:规范理论和卡西米尔效应的研究
- 批准号:
1068172 - 财政年份:2011
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
RUI: Studies on gauge theories and quantum Hall fluids
RUI:规范理论和量子霍尔流体研究
- 批准号:
0758008 - 财政年份:2008
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
Gauge theories in (2+1) dimensions and quantum Hall effect in higher dimensions
(2 1) 维度中的规范理论和更高维度中的量子霍尔效应
- 批准号:
0457304 - 财政年份:2005
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
RUI: Nonperturbative Aspects of Yang-Mills Theories in (2+1) Dimensions
RUI:(2 1) 维中杨米尔斯理论的非微扰方面
- 批准号:
9970724 - 财政年份:1999
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Conference: International conference on Malliavin calculus and related topics
会议:Malliavin 微积分及相关主题国际会议
- 批准号:
2308890 - 财政年份:2023
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 8.51万 - 项目类别:
Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 8.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
- 批准号:
2890480 - 财政年份:2023
- 资助金额:
$ 8.51万 - 项目类别:
Studentship
Topics in infinite dimensional algebra
无限维代数主题
- 批准号:
2301871 - 财政年份:2023
- 资助金额:
$ 8.51万 - 项目类别:
Continuing Grant