Stochastic Optimization with Model Uncertainty and Learning
具有模型不确定性和学习的随机优化
基本信息
- 批准号:0500503
- 负责人:
- 金额:$ 38.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theoretical foundation of operations research and management science for decision making under uncertainty rely on the development of a fully specified probability model. A probability model is formulated under some statistical assumptions. Optimal decision is then derived from this model. When implementing the optimal decision in practice, data is used to estimate the parameters to calibrate the probability model and the optimal decision purported by the probability model is then implemented. This approach totally ignores the effects of errors in the formulation of the probability model and the errors in the estimation of the parameters on the optimal decision. These errors can make the model ineffective in practice leading to a gap between theory and practice. This grant provides funding for developing modeling methodologies that accounts for these errors and for the development of solution approaches for identifying the optimal decisions when there are such modeling errors. Specifically, a systematic modeling methodology where a collection of models with learning will be developed. This collection will contain a probability model, though explicitly unknown, that accurately represents the real system. The solution approach will find an optimal decision such that the effect of not knowing the exact probability model is minimized. Hence the impact of modeling errors in the implementation of the decision prescribed by this approach in practice is minimal.If successful, the results of this research will reduce that gap between theory and practice in operations research and management science. A systematic modeling methodology that will be more reliable in practice will emerge out of this research. It will have the learning capability to make the decision prescribed by the model better and better over time. The solution approach will find an optimal decision such that the impact of modeling errors in the implementation of the decision prescribed by this approach in practice is minimal. New decision making practitioners and professors will be trained in this new approach.
运筹学和管理科学在不确定条件下进行决策的理论基础有赖于完全特定的概率模型的发展。在一定的统计假设下,建立了概率模型。然后由该模型得出最优决策。在实际实施最优决策时,利用数据估计参数,对概率模型进行标定,从而实现概率模型所声称的最优决策。该方法完全忽略了概率模型的建立误差和参数估计误差对最优决策的影响。这些错误可能会使该模型在实践中无效,导致理论与实践之间的差距。这笔赠款提供资金,用于开发解释这些错误的建模方法,以及开发解决方案,以便在出现此类建模错误时确定最佳决策。具体地说,是一种系统的建模方法,其中将开发一系列具有学习功能的模型。这个集合将包含一个概率模型,尽管它是明确未知的,但它准确地表示了真实的系统。求解方法将找到一个最优决策,从而使不知道确切概率模型的影响最小化。因此,模型误差对实践中该方法所规定的决策实施的影响是最小的。如果成功,本研究的结果将缩小运筹学和管理科学中理论与实践之间的差距。这项研究将产生一种在实践中更加可靠的系统建模方法。随着时间的推移,它将具有学习能力,使模型规定的决策越来越好。该解决方法将找到一个最优决策,以便在实施该方法所规定的决策时,建模误差的影响在实践中最小。新的决策实践者和教授将接受这种新方法的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lim其他文献
Learning variable ordering heuristics for solving Constraint Satisfaction Problems
学习变量排序启发法来解决约束满足问题
- DOI:
10.1016/j.engappai.2021.104603 - 发表时间:
2021 - 期刊:
- 影响因子:8
- 作者:
Wen Song;Zhiguang Cao;Jie Zhang;Chi Xu;Andrew Lim - 通讯作者:
Andrew Lim
The race is not to the swift
比赛不在于速度快
- DOI:
10.1046/j.1468-4004.2003.45112.x - 发表时间:
2004 - 期刊:
- 影响因子:0.8
- 作者:
M. K. Pickett;Andrew Lim - 通讯作者:
Andrew Lim
Capturing Expert Arguments from Medical Adjudication Discussions in a Machine-readable Format
以机器可读的格式从医学裁决讨论中获取专家观点
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Schaekermann;Graeme Beaton;Minahz Habib;Andrew Lim;K. Larson;E. Law - 通讯作者:
E. Law
An iterated construction approach with dynamic prioritization for solving the container loading problems
一种解决集装箱装载问题的动态优先级迭代构建方法
- DOI:
10.1016/j.eswa.2011.09.103 - 发表时间:
2012-03 - 期刊:
- 影响因子:8.5
- 作者:
Andrew Lim;Hong Ma;Jing Xu;Xingwen Zhang - 通讯作者:
Xingwen Zhang
Robust data-driven vehicle routing with time windows
- DOI:
https://doi.org/10.1287/opre.2020.2043 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
章宇;Zhenzhen Zhang;Andrew Lim;Melvyn Sim - 通讯作者:
Melvyn Sim
Andrew Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lim', 18)}}的其他基金
Objective Operational Learning and Applications
客观操作学习与应用
- 批准号:
1201085 - 财政年份:2012
- 资助金额:
$ 38.99万 - 项目类别:
Standard Grant
Coordinating Multiple Decision Makers in a Service Environment
在服务环境中协调多个决策者
- 批准号:
1031637 - 财政年份:2010
- 资助金额:
$ 38.99万 - 项目类别:
Standard Grant
SBIR Phase I: FileSafe: Policy-Driven Storage Virtualization for Online Data Backup and Recovery
SBIR 第一阶段:FileSafe:用于在线数据备份和恢复的策略驱动存储虚拟化
- 批准号:
0441700 - 财政年份:2005
- 资助金额:
$ 38.99万 - 项目类别:
Standard Grant
CAREER: Stochastic Control Problems in Financial Engineering
职业:金融工程中的随机控制问题
- 批准号:
0348746 - 财政年份:2004
- 资助金额:
$ 38.99万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Joint optimization of phisical encoder with object recognition model and its phathological application
物理编码器与目标识别模型的联合优化及其病理学应用
- 批准号:
23H05490 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Establishment of dietary optimization model for risk prediction and prevention related to fetal growth using artificial intelligence
利用人工智能建立胎儿生长相关风险预测和预防的膳食优化模型
- 批准号:
22KJ3110 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331153 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Standard Grant
Model-based Optimization and Reinforcement Learning with Applications to Nuclear Fusion Research
基于模型的优化和强化学习及其在核聚变研究中的应用
- 批准号:
2871389 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
$ 38.99万 - 项目类别:
Standard Grant
Development of Innovative Robot Polishing Technology by Model Based Simulation and Optimization involving AI
通过人工智能的基于模型的仿真和优化开发创新的机器人抛光技术
- 批准号:
22K03866 - 财政年份:2022
- 资助金额:
$ 38.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
- 批准号:
10612187 - 财政年份:2022
- 资助金额:
$ 38.99万 - 项目类别:
Optimization of human intestinal microbiota model and construction of evaluation system of postbiotics
人体肠道菌群模型优化及后生元评价体系构建
- 批准号:
22K05540 - 财政年份:2022
- 资助金额:
$ 38.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Small molecule inhibitors of hyperphosphorylated tau aggregation in Alzheimer's disease: lead optimization, and proof of concept in a rodent model
阿尔茨海默病中过度磷酸化 tau 蛋白聚集的小分子抑制剂:先导化合物优化和啮齿动物模型中的概念验证
- 批准号:
10621755 - 财政年份:2022
- 资助金额:
$ 38.99万 - 项目类别: