Objective Operational Learning and Applications
客观操作学习与应用
基本信息
- 批准号:1201085
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-15 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Public Abstract: "Objective Operational Learning and Applications"Andrew Lim and J. George ShanthikumarThe research objective of this award is to study a general approach called "Objective Operational Learning" for estimating an objective function and optimizing a stochastic system. The essential feature of this approach is that it is a hybrid between classical model-based approaches to stochastic optimization and purely non-parametric data driven methods that require minimal assumptions. Its advantage is that it allows the decision maker to incorporate structural knowledge of the system (which may only be partially correct) into the initial model, but to become increasingly data-driven and less dependent on these initial assumptions as the data set increases in size. The goal of the research is to show how objective operational learning can be applied to problems of interest in operations research and management science, and to establish theoretical properties such as small sample performance and asymptotic convergence of this approach.If successful, the research will lead to the development of new data driven methods for optimizing stochastic systems that perform well when the size of the data set is small but with attractive large sample properties, and insight into how these methods can be used through a number of case studies involving applied problems of interest to industry. Applications of interest include (but are not restricted to) staff and patient scheduling applications in healthcare and service systems, pricing and revenue management problems, and inventory control. Outcomes of research will be disseminated through journal and conference publications and research presentations, undergraduate research opportunities, and advanced undergraduate and graduate level courses and seminars.
公开摘要:“客观运算学习和应用“Andrew Lim和J.乔治ShanthiquarThe研究目标的这个奖项是研究一个通用的方法称为“客观运算学习”估计一个目标函数和优化一个随机系统。这种方法的基本特征是,它是一个混合的经典模型为基础的方法,随机优化和纯粹的非参数数据驱动的方法,需要最少的假设。它的优点是,它允许决策者将系统的结构知识(可能只是部分正确)纳入初始模型,但随着数据集大小的增加,它会变得越来越受数据驱动,越来越不依赖于这些初始假设。研究的目标是展示客观运算学习如何应用于运筹学和管理科学中感兴趣的问题,并建立这种方法的小样本性能和渐近收敛等理论性质,如果成功这项研究将导致开发新的数据驱动方法,用于优化随机系统,当数据集的大小很小时,具有吸引人的大样本特性,并通过一些涉及工业应用问题的案例研究深入了解如何使用这些方法。感兴趣的应用程序包括(但不限于)医疗保健和服务系统中的员工和患者调度应用程序,定价和收入管理问题以及库存控制。研究成果将通过期刊和会议出版物和研究报告,本科生研究机会以及高级本科生和研究生课程和研讨会进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lim其他文献
An iterated construction approach with dynamic prioritization for solving the container loading problems
一种解决集装箱装载问题的动态优先级迭代构建方法
- DOI:
10.1016/j.eswa.2011.09.103 - 发表时间:
2012-03 - 期刊:
- 影响因子:8.5
- 作者:
Andrew Lim;Hong Ma;Jing Xu;Xingwen Zhang - 通讯作者:
Xingwen Zhang
Learning variable ordering heuristics for solving Constraint Satisfaction Problems
学习变量排序启发法来解决约束满足问题
- DOI:
10.1016/j.engappai.2021.104603 - 发表时间:
2021 - 期刊:
- 影响因子:8
- 作者:
Wen Song;Zhiguang Cao;Jie Zhang;Chi Xu;Andrew Lim - 通讯作者:
Andrew Lim
The race is not to the swift
比赛不在于速度快
- DOI:
10.1046/j.1468-4004.2003.45112.x - 发表时间:
2004 - 期刊:
- 影响因子:0.8
- 作者:
M. K. Pickett;Andrew Lim - 通讯作者:
Andrew Lim
Capturing Expert Arguments from Medical Adjudication Discussions in a Machine-readable Format
以机器可读的格式从医学裁决讨论中获取专家观点
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Schaekermann;Graeme Beaton;Minahz Habib;Andrew Lim;K. Larson;E. Law - 通讯作者:
E. Law
Robust data-driven vehicle routing with time windows
- DOI:
https://doi.org/10.1287/opre.2020.2043 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
章宇;Zhenzhen Zhang;Andrew Lim;Melvyn Sim - 通讯作者:
Melvyn Sim
Andrew Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lim', 18)}}的其他基金
Coordinating Multiple Decision Makers in a Service Environment
在服务环境中协调多个决策者
- 批准号:
1031637 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Stochastic Optimization with Model Uncertainty and Learning
具有模型不确定性和学习的随机优化
- 批准号:
0500503 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SBIR Phase I: FileSafe: Policy-Driven Storage Virtualization for Online Data Backup and Recovery
SBIR 第一阶段:FileSafe:用于在线数据备份和恢复的策略驱动存储虚拟化
- 批准号:
0441700 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Stochastic Control Problems in Financial Engineering
职业:金融工程中的随机控制问题
- 批准号:
0348746 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Unifiying Machine Learning (ML) Frameworks: Source-to-Source Transpilation of ML Code for Complete Interoperability of Frameworks, Versions and Hardware to Streamline Business ML Implementations for Revenue Increases and Operational Costs/Waste Reductions
统一机器学习 (ML) 框架:ML 代码的源到源转换,实现框架、版本和硬件的完全互操作性,以简化业务 ML 实施,从而增加收入并减少运营成本/浪费
- 批准号:
10061942 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
SBIR Phase I: Operational Seasonal Forecasting of Environmental Data using Machine Learning and Statistical Methods
SBIR 第一阶段:使用机器学习和统计方法对环境数据进行业务季节性预测
- 批准号:
2042853 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Use of Machine Learning for Helicopter Ship Operational Research
使用机器学习进行直升机船舶运行研究
- 批准号:
2599516 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Survey on the learning environment in rural elementary schools under COVID-19 and research on operational methods
COVID-19下农村小学学习环境调查及运营方法研究
- 批准号:
21K04384 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Operational machine learning and mechanistic modelling for supporting patient flow at GOSH
用于支持 GOSH 患者流程的操作机器学习和机械建模
- 批准号:
2245620 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Studentship
SBIR Phase I: Machine learning emulators of weather and hydroclimate models for operational and financial risk assessment
SBIR 第一阶段:用于运营和财务风险评估的天气和水文气候模型的机器学习模拟器
- 批准号:
1843103 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant