Problems in Complex Analysis and CR Geometry
复分析和 CR 几何中的问题
基本信息
- 批准号:0500765
- 负责人:
- 金额:$ 12.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-15 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
D'Angelo's proposal concerns research in three related parts of complex analysis: positivity conditions in complex geometry, CR mappings, and algebraic aspects of subelliptic multiplier theory. One of D'Angelo's primary contributions to complex analysis in recent years has been a systematic study of positivity conditions for Hermitian symmetric functions on complex manifolds. This work has merged diverse issues such as a complex variables analogue of Hilbert's 17th problem, proper holomorphic mappings between balls, isometric imbedding for holomorphic bundles, and globalizable metrics into a coherent subject. The work on proper mappings led to a surprising result about primality; invariant CR mappings provide large classes of polynomials with integer coefficients exhibiting the same remarkable congruence properties satisfied by the p-th power of x plus y. Proper mappings also led to results in the complexity theory of mappings between balls. The work on subelliptic multiplier theory is related to the complexity and effectiveness of Kohn's algorithm, and thus fits into the same general area.Complex variable theory in one and several variables is a striking part of mathematics; it provides a beautiful example of pure mathematics, which has provided applications throughout engineering and the physical sciences. D'Angelo's work in CR geometry (a geometric part of complex analysis) has clarified one of the most basic issues, the roles of Hermitian symmetry and positivity conditions. His work on proper mappings between balls has led to new sorts of complexity questions, and even to a new primality test. D'Angelo has published two research level books in several complex variables, one undergraduate textbook (with D. West) with exciting problem sets, and has played an active role in mathematics education. He will be guiding a research experience for graduate students at MSRI in summer 2005 that will initiate students from many departments into CR geometry and the workdescribed in this proposal. Progress on these problems should impact complex variable theory, CR geometry, and possibly number theory.
德安杰洛的建议涉及研究三个相关部分的复杂分析:积极性条件复杂的几何,CR映射,代数方面的次椭圆乘子理论。其中D '安杰洛的主要贡献,复杂的分析,近年来一直是一个系统的研究积极的条件厄米对称函数的复杂流形。这项工作已经合并了不同的问题,如复变模拟希尔伯特的第17个问题,适当的全纯映射之间的球,等距嵌入的全纯丛,和globalizable指标到一个连贯的主题。关于适当映射的工作导致了关于素性的令人惊讶的结果;不变CR映射提供了具有整数系数的大类多项式,这些多项式表现出与x + y的p次幂所满足的相同的显着同余性质。适当的映射也导致结果的复杂性理论之间的映射球。亚椭圆乘子理论的研究与科恩算法的复杂性和有效性有关,因此属于同一个领域。一元和多元复变理论是数学中引人注目的一部分,它提供了纯数学的一个美丽的例子,在整个工程和物理科学中都有应用。D '安杰洛的工作CR几何(几何的一部分,复杂的分析)澄清了一个最基本的问题,作用的厄米对称性和积极的条件。他对球之间的适当映射的研究导致了新的复杂性问题,甚至导致了新的素数测试。D 'Angelo已经出版了两本研究水平的书在几个复杂的变量,一个本科教科书(与D。West)以令人兴奋的习题集,在数学教育中发挥了积极的作用。他将在2005年夏天指导MSRI研究生的研究经验,这将使许多系的学生开始接触CR几何和本提案中描述的工作。这些问题的进展应影响复变理论,CR几何,并可能数论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D'Angelo其他文献
HEMODYNAMIC EFFECTS OF TRANSCATHETER PULMONARY VALVE REPLACEMENT IN MIDDLE AND LATE ADULTHOOD
- DOI:
10.1016/s0735-1097(24)02808-0 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
John D'Angelo;John Lisko;Vasilis C. Babaliaros;Adam B. Greenbaum;Joel T. Hardin;Dennis W. Kim;Nikoloz Shekiladze;Hiroki Ueyama;Fred H. Rodriguez;Allen Ligon - 通讯作者:
Allen Ligon
Professional advancement, performance, and injury characteristics of baseball players entering the Major League Baseball draft after treatment for shoulder injuries
- DOI:
10.1016/j.jse.2018.07.027 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Aakash Chauhan;Jason H. Tam;Anthony J. Porter;Sravya Challa;Samuel Early;John D'Angelo;Daniel Keefe;Heinz Hoenecke;Jan Fronek - 通讯作者:
Jan Fronek
Documenting Spatial Variation of SCG Signals for Optimal Sensor Placement
- DOI:
10.1016/j.cardfail.2020.09.269 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Richard H. Sandler;Md Khushidul Azad;John D'Angelo;Peshala Gamage;Nirav Y. Raval;Robert J. Mentz;Hansen A. Mansy - 通讯作者:
Hansen A. Mansy
John D'Angelo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John D'Angelo', 18)}}的其他基金
Hermitian Analysis and CR Geometry
埃尔米特分析和 CR 几何
- 批准号:
1361001 - 财政年份:2014
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Hermitian Forms and CR Geometry
埃尔米特形式和 CR 几何
- 批准号:
1066177 - 财政年份:2011
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Positivity Conditions in Complex Analysis
复杂分析中的积极条件
- 批准号:
0200551 - 财政年份:2002
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Mathematics Research and Education at the University of Illinois at Urbana-Champaign
伊利诺伊大学厄巴纳-香槟分校数学研究与教育
- 批准号:
9983160 - 财政年份:2000
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Complex Variables Analogues of Hilbert's Seventeenth Problem
希尔伯特第十七问题的复变量类似物
- 批准号:
9970024 - 财政年份:1999
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVariables
数学科学:多个复变量的几何问题
- 批准号:
8900367 - 财政年份:1989
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVeriables
数学科学:几个复变量中的几何问题
- 批准号:
8701618 - 财政年份:1987
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Several Complex Variables and Geometry
数学科学:多个复变量和几何
- 批准号:
8501008 - 财政年份:1985
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 12.16万 - 项目类别:
Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 12.16万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
- 批准号:
20H00117 - 财政年份:2020
- 资助金额:
$ 12.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Problems in Complex Analysis, Partial Differential Equations, and Mathematical Physics
复分析、偏微分方程和数学物理问题
- 批准号:
1855947 - 财政年份:2019
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
Complex Problems in Functional Data Analysis
函数数据分析中的复杂问题
- 批准号:
1914917 - 财政年份:2019
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2019
- 资助金额:
$ 12.16万 - 项目类别:
Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2018
- 资助金额:
$ 12.16万 - 项目类别:
Postdoctoral Fellowships
Clinicians, Computers, and a Common Language: Building Artificial Intelligence which Collaborates with Human Knowledge on Complex Problems in Medical Image Analysis and Surgical Data Science
临床医生、计算机和通用语言:构建人工智能,与人类知识协作解决医学图像分析和手术数据科学中的复杂问题
- 批准号:
516382-2018 - 财政年份:2017
- 资助金额:
$ 12.16万 - 项目类别:
Postdoctoral Fellowships
Problems in Complex Analysis and Complex Geometry
复杂分析和复杂几何问题
- 批准号:
1266033 - 财政年份:2013
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Accurate and Efficient Reliability Analysis of Complex Structural Engineering Problems
复杂结构工程问题准确高效的可靠性分析
- 批准号:
1127698 - 财政年份:2011
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant