Positivity Conditions in Complex Analysis
复杂分析中的积极条件
基本信息
- 批准号:0200551
- 负责人:
- 金额:$ 12.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: DMS-0200551PI: John P. D'AngeloABSTRACTAn important aspect of complex analysis concerns inequalitieson absolute values of holomorphic functions or, more generally,on norms of holomorphic mappings. In recent work the proposerhas developed a systematic approach to this subject. Hehas given a complex variables analogue of Hilbert's 17thproblem, applied the techniques to proper holomorphicmappings, and (with Catlin) proved an isometric imbeddingtheorem for holomorphic vector bundles. Also he has recentlywritten a Carus Monograph entitled "Inequalities from ComplexAnalysis", thereby laying a foundation for more work in thisarea. The current proposal describes how to expand theseresearch directions and discusses possible mathematicalapplications.Although the proposal focuses on pure mathematics, one canimagine the application to the sciences of some of this work.For example, in Quantum Mechanics, an observable is aself-adjoint (Hermitian) operator on a Hilbert space. Theproposal allows for a more general approach, by describinga notion of self-adjointness for non-linear mappings. One ofthe main ideas of the proposer's work has been to describevarious notions of positivity for such mappings. Several newconditions arise; these conditions are equivalent in thelinear case from Quantum Mechanics, but distinct in general,and therefore may lead to applications in physics. Inparticular the proposer hopes to develop applicationsof the non-linear analogue of the Cauchy-Schwarz inequality.
提案编号:复分析的一个重要方面涉及全纯函数的绝对值不等式,或者更一般地说,涉及全纯映射的范数不等式。在最近的工作中,proposerhas开发了一个系统的方法来解决这个问题。他给出了一个复变模拟希尔伯特的第17问题,适用于适当的holomorphicmapping技术,并(与卡特林)证明了等距imbeddingtheorem全纯向量丛。此外,他最近写了卡鲁斯专题题为“不平等的复杂性分析”,从而奠定了基础,为更多的工作在这一领域。目前的提案描述了如何扩展这些研究方向,并讨论了可能的数学应用。虽然提案侧重于纯数学,但人们可以想象其中一些工作在科学上的应用。例如,在量子力学中,可观测量是希尔伯特空间上的自伴(厄米特)算子。该建议允许一个更一般的方法,通过描述一个概念的自伴非线性映射。提出者的工作的主要思想之一是描述各种概念的积极性,这样的映射。出现了几种新情况;这些条件在量子力学的线性情况下是等价的,但在一般情况下是不同的,因此可能导致在物理学中的应用。特别是提议者希望开发应用程序的非线性模拟的柯西-施瓦茨不等式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D'Angelo其他文献
HEMODYNAMIC EFFECTS OF TRANSCATHETER PULMONARY VALVE REPLACEMENT IN MIDDLE AND LATE ADULTHOOD
- DOI:
10.1016/s0735-1097(24)02808-0 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
John D'Angelo;John Lisko;Vasilis C. Babaliaros;Adam B. Greenbaum;Joel T. Hardin;Dennis W. Kim;Nikoloz Shekiladze;Hiroki Ueyama;Fred H. Rodriguez;Allen Ligon - 通讯作者:
Allen Ligon
Professional advancement, performance, and injury characteristics of baseball players entering the Major League Baseball draft after treatment for shoulder injuries
- DOI:
10.1016/j.jse.2018.07.027 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:
- 作者:
Aakash Chauhan;Jason H. Tam;Anthony J. Porter;Sravya Challa;Samuel Early;John D'Angelo;Daniel Keefe;Heinz Hoenecke;Jan Fronek - 通讯作者:
Jan Fronek
Documenting Spatial Variation of SCG Signals for Optimal Sensor Placement
- DOI:
10.1016/j.cardfail.2020.09.269 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Richard H. Sandler;Md Khushidul Azad;John D'Angelo;Peshala Gamage;Nirav Y. Raval;Robert J. Mentz;Hansen A. Mansy - 通讯作者:
Hansen A. Mansy
John D'Angelo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John D'Angelo', 18)}}的其他基金
Hermitian Analysis and CR Geometry
埃尔米特分析和 CR 几何
- 批准号:
1361001 - 财政年份:2014
- 资助金额:
$ 12.19万 - 项目类别:
Continuing Grant
Hermitian Forms and CR Geometry
埃尔米特形式和 CR 几何
- 批准号:
1066177 - 财政年份:2011
- 资助金额:
$ 12.19万 - 项目类别:
Continuing Grant
Problems in Complex Analysis and CR Geometry
复分析和 CR 几何中的问题
- 批准号:
0500765 - 财政年份:2005
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Mathematics Research and Education at the University of Illinois at Urbana-Champaign
伊利诺伊大学厄巴纳-香槟分校数学研究与教育
- 批准号:
9983160 - 财政年份:2000
- 资助金额:
$ 12.19万 - 项目类别:
Continuing Grant
Complex Variables Analogues of Hilbert's Seventeenth Problem
希尔伯特第十七问题的复变量类似物
- 批准号:
9970024 - 财政年份:1999
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVariables
数学科学:多个复变量的几何问题
- 批准号:
8900367 - 财政年份:1989
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVeriables
数学科学:几个复变量中的几何问题
- 批准号:
8701618 - 财政年份:1987
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Several Complex Variables and Geometry
数学科学:多个复变量和几何
- 批准号:
8501008 - 财政年份:1985
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
相似海外基金
Investigating healthcare for rural females with complex gynecological conditions
农村女性复杂妇科疾病医疗保健调查
- 批准号:
10912960 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
ReliablE in-Vehicle pErception and decisioN-making in complex environmenTal conditionS (EVENTS)
在复杂的环境条件(事件)中可靠的车内感知和决策
- 批准号:
10053952 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
EU-Funded
ReliablE in-Vehicle pErception and decisioN-making in complex environmenTal conditionS (EVENTS)
在复杂的环境条件(事件)中可靠的车内感知和决策
- 批准号:
10044773 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
EU-Funded
Stable isotope systematics in complex carbonates: Decoding geochemical processes and environmental conditions on Earth and other planets
复杂碳酸盐中的稳定同位素系统学:解码地球和其他行星上的地球化学过程和环境条件
- 批准号:
RGPIN-2020-05810 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Discovery Grants Program - Individual
Development of the apparatus for measuring electric and magnetic properties of iron-based superconductors under complex extreme conditions and its application to the BCS-BEC crossover physics
复杂极端条件下铁基超导体电磁性能测量装置研制及其在BCS-BEC交叉物理中的应用
- 批准号:
22K03511 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAR-PF: Dynamic flow channeling through complex fracture networks under multi-frequency oscillatory flow conditions: A fully-coupled hydromechanical approach
EAR-PF:多频振荡流条件下通过复杂裂缝网络的动态流道:全耦合流体力学方法
- 批准号:
2204543 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Fellowship Award
Genetic influences on the mean and variance of DNA methylation in early life to understand the biological underpinnings of childhood complex conditions.
遗传对生命早期 DNA 甲基化平均值和方差的影响,以了解儿童复杂状况的生物学基础。
- 批准号:
471023 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Operating Grants
Stable isotope systematics in complex carbonates: Decoding geochemical processes and environmental conditions on Earth and other planets
复杂碳酸盐中的稳定同位素系统学:解码地球和其他行星上的地球化学过程和环境条件
- 批准号:
RGPIN-2020-05810 - 财政年份:2021
- 资助金额:
$ 12.19万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Intrinsic and Extrinsic Conditions in Several Complex Variables
职业:几个复杂变量的内在和外在条件
- 批准号:
2105580 - 财政年份:2021
- 资助金额:
$ 12.19万 - 项目类别:
Continuing Grant