Complex Analysis and CR Geometry

复分析和 CR 几何

基本信息

  • 批准号:
    0753978
  • 负责人:
  • 金额:
    $ 21.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-15 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

The principal investigator will study ten related problems in several complex variables. The problems divide roughly into two areas, positivity conditions in complex analysis and CR geometry. The ideas on positivity conditions have already had an impact on the principal investigator's work on complex variables analogues of Hilbert's seventeenth problem, his work with Catlin on isometric imbedding, and his work with Varolin on stability criteria for Hermitian metrics. One of the main concerns here is a nonlinear Cauchy-Schwarz inequality, both for metrics on holomorphic line bundles and in a general setting. The second area primarily concerns CR mappings between spheres and hyperquadrics. Two main issues arise: group-invariant CR mappings and the complexity of smooth CR mappings between spheres in different dimensions. The group-invariant mappings exhibit surprising connections with number theory and combinatorics. The principal investigator intends to explore the connection with number theory. For instance, he will investigate certain cubic and higher order Diophantine equations that arise when considering CR mappings from Lens spaces to hyperquadrics. These equations involve an injectivity result that is elementary in the simplest case, where binomial coefficients arise, but quite subtle in general. He will continue to develop notions of complexity for CR mappings, to study proper holomorphic mappings, and to seek connections with sub-Riemannian geometry.Mapping theorems in one complex dimension have played a crucial role in mathematics, physics, and engineering for at least a century. The situation in higher dimensions is much more subtle and new phenomena arise. Eventually the applications of higher dimensional complex analysis will permeate all of science, as one-dimensional complex analysis does now. The crucial point of departure in this research is to pass from the unit circle to the unit sphere. The role of CR mappings between spheres in different dimensions has become more prominent in recent years. CR mappings are boundary analogues of complex analytic mappings. Their study leads to an unusual combination of analysis, geometry, and algebra. Progress has led to complex variables analogues of Hilbert's seventeenth problem, to isometric imbedding theorems, to a new kind of complexity theory, and to helical CR structures. Recent investigations have led to number-theoretic questions that form the foundation for the proposed work. This work will continue to impact complex analysis, especially via the portion concerning positivity conditions, but it will also broaden the scope of CR Geometry to include applications to complexity theory and to number theory. The proposer has organized several meetings around these topics, a program in 2005 at MSRI for graduate students and a workshop in 2006 at AIM for researchers. He will be giving a course at PCMI to graduate students on related material. Finally, he has introduced both his postdoctoral fellow Jiri Lebl and his current graduate student Dusty Grundmeier to the possible new applications of CR geometry.
首席研究员将研究几个复变量中的十个相关问题。这些问题大致可分为复分析中的正性条件和CR几何两个方面。积极性条件的想法已经产生了影响的主要研究者的工作复变量类似物希尔伯特的第十七个问题,他的工作与卡特林等距嵌入,他的工作与瓦罗林稳定标准的埃尔米特度量。这里的一个主要问题是一个非线性柯西-施瓦茨不等式,无论是度量的全纯线丛和一般设置。第二个领域主要涉及球面和超二次曲面之间的CR映射。两个主要的问题出现:群不变CR映射和光滑CR映射的复杂性在不同的维度之间的领域。群不变映射与数论和组合数学有着惊人的联系。首席研究员打算探索与数论的联系。例如,他将调查某些三次和高阶丢番图方程时出现的考虑CR映射从透镜空间超二次。这些方程涉及的注入性的结果,是小学在最简单的情况下,二项式系数出现,但相当微妙的一般。他将继续发展概念的复杂性CR映射,研究适当的全纯映射,并寻求连接与次黎曼几何。映射定理在一个复杂的层面发挥了至关重要的作用,在数学,物理学和工程至少世纪。在更高维度的情况更加微妙,新的现象出现。最终,高维复分析的应用将渗透到所有科学领域,就像现在的一维复分析一样。本研究的关键出发点是从单位圆过渡到单位球面。近年来,不同维度的球之间的CR映射的作用变得更加突出。CR映射是复解析映射的边界模拟。他们的研究导致了分析、几何和代数的不寻常的结合。进展导致复变量类似希尔伯特的第十七个问题,等距嵌入定理,一种新的复杂性理论,螺旋CR结构。 最近的调查导致数论问题,形成拟议的工作的基础。这项工作将继续影响复杂性分析,特别是通过关于正性条件的部分,但它也将扩大CR几何的范围,包括复杂性理论和数论的应用。提议者围绕这些主题组织了几次会议,2005年在MSRI为研究生举办了一个方案,2006年在AIM为研究人员举办了一个讲习班。他将在PCMI为研究生开设相关材料的课程。最后,他介绍了他的博士后研究员Jiri Lebl和他目前的研究生Dusty Grundmeier对CR几何可能的新应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John D'Angelo其他文献

HEMODYNAMIC EFFECTS OF TRANSCATHETER PULMONARY VALVE REPLACEMENT IN MIDDLE AND LATE ADULTHOOD
  • DOI:
    10.1016/s0735-1097(24)02808-0
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    John D'Angelo;John Lisko;Vasilis C. Babaliaros;Adam B. Greenbaum;Joel T. Hardin;Dennis W. Kim;Nikoloz Shekiladze;Hiroki Ueyama;Fred H. Rodriguez;Allen Ligon
  • 通讯作者:
    Allen Ligon
Professional advancement, performance, and injury characteristics of baseball players entering the Major League Baseball draft after treatment for shoulder injuries
  • DOI:
    10.1016/j.jse.2018.07.027
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aakash Chauhan;Jason H. Tam;Anthony J. Porter;Sravya Challa;Samuel Early;John D'Angelo;Daniel Keefe;Heinz Hoenecke;Jan Fronek
  • 通讯作者:
    Jan Fronek
Documenting Spatial Variation of SCG Signals for Optimal Sensor Placement
  • DOI:
    10.1016/j.cardfail.2020.09.269
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard H. Sandler;Md Khushidul Azad;John D'Angelo;Peshala Gamage;Nirav Y. Raval;Robert J. Mentz;Hansen A. Mansy
  • 通讯作者:
    Hansen A. Mansy

John D'Angelo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John D'Angelo', 18)}}的其他基金

Hermitian Analysis and CR Geometry
埃尔米特分析和 CR 几何
  • 批准号:
    1361001
  • 财政年份:
    2014
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Hermitian Forms and CR Geometry
埃尔米特形式和 CR 几何
  • 批准号:
    1066177
  • 财政年份:
    2011
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Problems in Complex Analysis and CR Geometry
复分析和 CR 几何中的问题
  • 批准号:
    0500765
  • 财政年份:
    2005
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Positivity Conditions in Complex Analysis
复杂分析中的积极条件
  • 批准号:
    0200551
  • 财政年份:
    2002
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Mathematics Research and Education at the University of Illinois at Urbana-Champaign
伊利诺伊大学厄巴纳-香槟分校数学研究与教育
  • 批准号:
    9983160
  • 财政年份:
    2000
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Complex Variables Analogues of Hilbert's Seventeenth Problem
希尔伯特第十七问题的复变量类似物
  • 批准号:
    9970024
  • 财政年份:
    1999
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVariables
数学科学:多个复变量的几何问题
  • 批准号:
    8900367
  • 财政年份:
    1989
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Problems in Several ComplexVeriables
数学科学:几个复变量中的几何问题
  • 批准号:
    8701618
  • 财政年份:
    1987
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Several Complex Variables and Geometry
数学科学:多个复变量和几何
  • 批准号:
    8501008
  • 财政年份:
    1985
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Geometry of Real Hypersurfaces
真实超曲面的几何形状
  • 批准号:
    8100731
  • 财政年份:
    1981
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
  • 批准号:
    10188196
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
  • 批准号:
    10615697
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
  • 批准号:
    10398904
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
Microstructural Analysis of Co-Cr Alloy Produced by Additive Manufacturing Process
增材制造钴铬合金的微观结构分析
  • 批准号:
    514827-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Engage Grants Program
Local strucuture analysis of Cr(VI) ion dispersed in compound phases of Cr-containing slag
含Cr渣复合相中Cr(VI)离子分散的局部结构分析
  • 批准号:
    26420755
  • 财政年份:
    2014
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hermitian Analysis and CR Geometry
埃尔米特分析和 CR 几何
  • 批准号:
    1361001
  • 财政年份:
    2014
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Geometric methods in complex analysis and CR geometry
复杂分析和 CR 几何中的几何方法
  • 批准号:
    311747-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and CR Geometry in Several Complex Variables
多复杂变量的分析与CR几何
  • 批准号:
    1405100
  • 财政年份:
    2014
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Geometric methods in complex analysis and CR geometry
复杂分析和 CR 几何中的几何方法
  • 批准号:
    311747-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric methods in complex analysis and CR geometry
复杂分析和 CR 几何中的几何方法
  • 批准号:
    311747-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了