Research and Education in Several Complex Variables

多个复杂变量的研究和教育

基本信息

  • 批准号:
    0500842
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

The d-bar-Neumann problem may be viewed as the study of the solutionof the inhomogeneous Cauchy-Riemann equations having minimalL^2-norm. After Kohn's solution of the problem on strictlyPseudo-convex domains, important advances in the L^2-Sobolev theoryincluded the work of Hormander on L^2-estimates, D'Angelo and Catlinon finite type and subellipticity, Boas and the PI on globalregularity on domains of infinite type, and Kiselman, Barrett, andChrist on irregularity on worm domains. However, characterizingglobal regularity remains a fundamental open problem. Likewise, quitegeneral sufficient conditions are known for compactness of thed-bar-Neumann operator, but a characterization on generalpseudo-convex domains in terms of boundary data remains elusive. Theselong term goals represent two thrusts of this project. The PIrecently observed intriguing links between sufficient conditions forregularity properties of the d-bar-Neumann operator and sufficientconditions for the existence of a Stein neighborhood basis for theclosure of the domain. Investigating to what extent regularityproperties of the d-bar-Neumann operator such as compactness implythe existence of a Stein neighborhood basis of the closure of thedomain is a third thrust of this project. During this project, the PIwill supervise several postdoctoral researchers and several graduatestudents. He will co-organize a special semester at the ErwinSchrodinger International Institute for Mathematical Physicsdedicated to topics investigated in this project, and he will give alecture course within the Institute's Senior Fellows programintroducing these topics to graduate students and junior researchers.The study of analysis in several complex variables can be motivated bythe centrality of the subject within mathematics as well as through adirect appeal to its usefulness. For example, one of the basic lawsof nature, causality, when transcribed via a mathematical devicecalled Fourier transform, leads immediately to analytic functions ofseveral (in this case, four) complex variables. The PI has shown thatsome of the problems to be studied in this project have intimateconnections to issues emanating from quantum mechanics. The centralobject of study in this project, the Cauchy-Riemann equations, form amodel problem for a subject central to physics and engineering(partial differential equations). Finally, the project willcontribute significantly to the development of human resourcesthrough training of highly qualified personnel at the postdoctoral andgraduate levels, respectively.
d-bar-Neumann问题可以看作是对具有最小^2范数的非齐次Cauchy-Riemann方程解的研究。在Kohn对严格拟凸域问题的解决之后,L^2-Sobolev理论的重要进展包括Hormander关于L^2估计的工作,D'Angelo和Catlinon有限型和亚椭圆性的工作,Boas和PI关于无限型域上的全局正则性的工作,Kiselman、Barrett和christ关于蠕虫域上的不规则性的工作。然而,描述全球规律性仍然是一个悬而未决的根本问题。同样地,对于d-bar- neumann算子的紧性,我们知道相当一般的充分条件,但是在一般伪凸域的边界数据的刻画仍然是难以捉摸的。这些长期目标代表了这个项目的两个重点。pi最近观察到d-bar-Neumann算子正则性的充分条件和区域闭包的Stein邻域基存在的充分条件之间的有趣联系。研究d-bar-Neumann算子的正则性(如紧性)在多大程度上暗示了闭域的Stein邻域基的存在是本项目的第三个重点。在该项目中,将指导若干博士后研究人员和若干研究生。他将在埃尔文·薛定谔国际数学物理研究所共同组织一个特别的学期,专门研究这个项目中的主题,他将在该研究所的高级研究员项目中讲授课程,向研究生和初级研究人员介绍这些主题。对几个复杂变量的分析的研究可以被数学学科的中心地位所激发,也可以通过对其有用性的直接呼吁来激发。例如,自然的基本法则之一,因果关系,当通过称为傅里叶变换的数学装置转录时,立即导致几个(在这种情况下,四个)复变量的解析函数。PI已经表明,在这个项目中要研究的一些问题与量子力学产生的问题有着密切的联系。这个项目的中心研究对象,柯西-黎曼方程,形成了物理和工程(偏微分方程)的中心主题的模型问题。最后,该项目将通过培养博士后和研究生水平的高素质人才,为人力资源的发展做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emil Straube其他文献

Emil Straube的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emil Straube', 18)}}的其他基金

Research and Education in Several Complex Variables
多个复杂变量的研究和教育
  • 批准号:
    2247175
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Workshop on Analysis and Geometry in Several Complex Variables
多个复杂变量的分析与几何研讨会
  • 批准号:
    1500361
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research and Education in Several Complex Variables
多个复杂变量的研究和教育
  • 批准号:
    0758534
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Holomorphic Mappings and Projections
数学科学:全纯映射和投影
  • 批准号:
    9002541
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Attracting, preparing, and sustaining quality teachers in early education
吸引、培养和维持早期教育领域的优质教师
  • 批准号:
    DP240100249
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Women's mental illness in pregnancy: Exploring contact with secondary mental health services and links with offspring health and education outcomes
妇女妊娠期精神疾病:探索与二级心理健康服务的联系以及与后代健康和教育成果的联系
  • 批准号:
    ES/Z502492/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation Grant: Active Societal Participation In Research and Education
合作研究:实施补助金:社会积极参与研究和教育
  • 批准号:
    2326774
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
  • 批准号:
    2327488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了