Hecke Algebras and Complex Reflection Groups
赫克代数和复反射群
基本信息
- 批准号:0500873
- 负责人:
- 金额:$ 9.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A complex reflection group is a finite group of transformations of acomplex vector space that is generated by reflections (i.e.,finite-order transformations that fix some hyperplane pointwise).Recent work by a number of people has revealed surprising parallelsbetween these groups and real reflection groups, or even Weyl groups:specifically, they give rise to a number of representation theoreticobjects, such as Hecke algebras and generic degrees, even though thereis no algebraic group in the background whose representation theory isbeing described. Broue and others have conjectured the existence ofmysterious, unknown objects called "spetses" as the source of thesephenomena. The aim of this project is to extend this view: onespecific goal is to construct an analogue of the Springercorrespondence for complex reflection groups. Our techniques ought toyield uniform accounts of certain structures coming from Heckealgebras of complex reflection groups, and perhaps point the way todeveloping a general framework in which to study these groups, in thespirit of Coxeter theory.A square matrix is called a reflection matrix if (a) some power of itis the identity matrix, and (b) all but one of its eigenvalues is 1.A reflection group is a finite group of matrices in which everyelement can be written as a product of reflection matrices that arealso in the group. Reflection groups of real-valued matrices, firststudied in depth by Coxeter in the 1930's, have long played a vitalrole in many areas of mathematics: perhaps most importantly, thestructure and representations of a large class of Lie groups areclosely governed by certain real reflection groups (the so-called Weylgroups). Reflection groups of complex-valued matrices, in contrast,are much less well-studied, but recent work by a number of people hasshown that they exhibit a number of disparate and surprising parallelswith real reflection groups, or even with Weyl groups. In thisproject, we propose to further develop the analogy with realreflection groups, specifically by studying the structure of certainrelated objects called Hecke algebras. In the process, we hope thepoint the way to a uniform explanation for these phenomena, andperhaps to a structure theory for the complex reflection groupsthemselves.
复反射群是由反射生成的复向量空间的变换的有限群(即,一些人最近的工作揭示了这些群与真实的反射群,甚至Weyl群之间令人惊讶的相似之处:具体地说,它们产生了许多表示理论,如Hecke代数和一般度,即使在背景中没有代数群的表示理论被描述。 布鲁和其他人已经证实了神秘的,未知的物体的存在,称为“斯佩策”作为这些现象的来源。 这个项目的目的是扩展这个观点:一个具体的目标是为复杂的反射群构建一个类似的Springer对应。 我们的技术应该对来自复反射群的赫克代数的某些结构给出统一的解释,并且也许可以指出发展一个通用框架来研究这些群的方法,以考克斯特理论的精神。一个方阵被称为反射矩阵,如果(a)它的某个幂是单位矩阵,(B)它的特征值除一个外都是1.反射群是一个有限的矩阵群,其中每个元素都可以写成也在群中的反射矩阵的乘积. 实值矩阵的反射群在20世纪30年代首先由Coxeter深入研究,长期以来在数学的许多领域中发挥着重要作用:也许最重要的是,一大类李群的结构和表示密切地受某些真实的反射群(所谓的Weyl群)的支配。 与此相反,复值矩阵的反射群的研究要少得多,但最近一些人的工作表明,它们与真实的反射群,甚至与Weyl群表现出许多不同的和令人惊讶的平行性。 在这个项目中,我们建议进一步发展与实反射群的类比,特别是通过研究某些称为Hecke代数的相关对象的结构。 在这个过程中,我们希望能为这些现象的统一解释指明道路,也许还能为复杂反射群本身的结构理论指明道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pramod Achar其他文献
Pramod Achar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pramod Achar', 18)}}的其他基金
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
- 批准号:
2231492 - 财政年份:2023
- 资助金额:
$ 9.89万 - 项目类别:
Continuing Grant
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant
Geometric Methods in Modular Representation Theory
模表示论中的几何方法
- 批准号:
1802241 - 财政年份:2018
- 资助金额:
$ 9.89万 - 项目类别:
Continuing Grant
Future Directions in Representation Theory
表示论的未来方向
- 批准号:
1743974 - 财政年份:2017
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant
Modular Representation Theory and Geometric Langlands Duality
模表示论与几何朗兰兹对偶
- 批准号:
1500890 - 财政年份:2015
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant
Derived Equivalences and Mixed Categories in Representation Theory
表示论中的派生等价和混合范畴
- 批准号:
1001594 - 财政年份:2010
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant
Representation Theory: Orbit Method and Complex Groups
表示论:轨道法和复群
- 批准号:
0102030 - 财政年份:2001
- 资助金额:
$ 9.89万 - 项目类别:
Fellowship Award
相似海外基金
New Developments at the Interface of Banach Algebras and Complex Analysis
Banach代数与复分析接口的新进展
- 批准号:
1856010 - 财政年份:2019
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant
COMPLEX LAGRANGIAN SUBMANIFOLDS IN HOLOMORPHIC SYMPLECTIC VARIETIES AND DIFFERENTIAL GRADED ALGEBRAS
全纯辛簇和微分梯度代数中的复拉格朗日子流形
- 批准号:
2901171 - 财政年份:2018
- 资助金额:
$ 9.89万 - 项目类别:
Studentship
The study of permanent properties for inclusions of C*-algebras and its application to the complex system
C*-代数包含的永久性质研究及其在复杂系统中的应用
- 批准号:
17K05285 - 财政年份:2017
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex dynamical systems and related C*-algebras
复杂动力系统和相关 C* 代数
- 批准号:
16K05178 - 财政年份:2016
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular representation theory of Hecke algebras associated with complex reflection groups and their quasi-hereditary covers
与复反射群相关的赫克代数的模表示论及其拟遗传覆盖
- 批准号:
24740007 - 财政年份:2012
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research of complex dynamical systems and C*-algebras
复杂动力系统和C*-代数研究
- 批准号:
23540242 - 财政年份:2011
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular representation theory of algebras associated with complex reflection groups
与复反射群相关的代数模表示论
- 批准号:
22840025 - 财政年份:2010
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on Complex dynamical systems and operator algebras
复杂动力系统与算子代数研究
- 批准号:
19340040 - 财政年份:2007
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation theory of algebraic groups, Hecke algebras and complex reflection groups
代数群的表示论、赫克代数和复反射群
- 批准号:
13440014 - 财政年份:2001
- 资助金额:
$ 9.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Conference on Banach Algebras and Several Complex Variables; New Haven, Connecticut; June 21-24, 1983
数学科学:巴拿赫代数和几个复变量会议;
- 批准号:
8217128 - 财政年份:1983
- 资助金额:
$ 9.89万 - 项目类别:
Standard Grant














{{item.name}}会员




