Geometric Theory of Sobolev Spaces
索博列夫空间的几何理论
基本信息
- 批准号:0500966
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposal is to investigate variousproblems in Geometric Analysis with the theory of Sobolevspaces as a main tool. As the theory of Sobolev spaces hasan impressive range of applications, the proposaldoes not focus on a narrow problematics but rather, itaddresses a number of problems from a broader range of areas inGeometric Analysis. That includes study of:(1) boundedness of maximal functions in Sobolev spaces;(2) Sobolev extension domains;(3) interplay between isoperimetric inequality, Sobolev inequalityand the truncation method in the vectorial case related to Korn'sinequality and the Sobolev inequality of Strauss;(4) geometric properties of Sobolev mappings between domains in theEuclidean space (this research is related to problems in nonlinearelasticity);(5) bi-Lipschitz embeddings of metric spaces;(6) Lipschitz approximation of Sobolev mappings between manifolds,polyhedra and metric spaces with connections to the topology of spaces.(7) degree theory of mappings in Orlicz-Sobolev spaces in the casein which the target space is a rational homology sphere;(8) the Hardy space regularity of Jacobians of mappings between manifoldswith applications to the regularity questions in the calculus ofvariations.Theory of Sobolev spaces was one of the greatest discoveries inthe XXth century mathematics. This theory is the most important singletool in studying nonlinear partial differential equations, both in itstheoretical aspects and numerical implementation.Although the theory of Sobolev spaces has been created in the latethirties,in recent years, there have been major breakthroughs in the theory, byexpanding the applications to new areas of pure mathematicslike analysis on metric spaces, geometric group theory or algebraictopology as well as to areas in applied mathematics, like for example to non-convexcalculus of variations. The aim of the proposal is to continue thisinvestigation in its various aspects. The PI has intention to advise PhDstudents on problems closely related to the proposal.
该计划的目标是以Sobolev空间理论为主要工具来研究几何分析中的各种问题。由于Sobolev空间的理论有着广泛的应用,因此本文的命题并不局限于一个狭窄的问题,而是从几何分析的更广泛的领域中提出了许多问题。其中包括:(1)Sobolev空间中极大函数的有界性;(2)Sobolev扩张域;(3)等周不等式、Sobolev不等式和与Korn不等式和Strauss的Sobolev不等式有关的向量情形下的截断方法之间的相互作用;(4)欧氏空间中域间Sobolev映射的几何性质(5)度量空间的双Lipschitz嵌入;(6)流形、多面体和度量空间之间Sobolev映射的Lipschitz逼近,并与空间的拓扑有关。(7)(8)流形间映射的Jacobian的哈代空间正则性及其在变分法正则性问题中的应用Sobolev空间理论是二十世纪数学中最伟大的发现之一。Sobolev空间理论是研究非线性偏微分方程的最重要的工具,无论是在理论方面还是在数值实现方面,尽管Sobolev空间理论是在30年代后期创建的,但近年来,该理论已经取得了重大突破,通过将应用扩展到纯几何学的新领域,如度量空间上的分析,几何群论或代数拓扑学以及应用数学领域,例如变分的非凸演算。该提案的目的是在各个方面继续这项调查。PI打算就与该提案密切相关的问题向博士生提供建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr Hajlasz其他文献
Piotr Hajlasz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr Hajlasz', 18)}}的其他基金
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Weakly Differentiable Mappings and Functions: Analysis, Geometry, and Topology
弱可微映射和函数:分析、几何和拓扑
- 批准号:
1800457 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry and Topology of the Heisenberg Groups
海森堡群的几何和拓扑
- 批准号:
1500647 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Sobolev spaces in analysis and geometry
分析和几何中的索博列夫空间
- 批准号:
1161425 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry and topology of weakly differentiable mappings into Euclidean spaces, manifolds and metric spaces
欧几里得空间、流形和度量空间的弱可微映射的几何和拓扑
- 批准号:
0900871 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant