Geometry and topology of weakly differentiable mappings into Euclidean spaces, manifolds and metric spaces
欧几里得空间、流形和度量空间的弱可微映射的几何和拓扑
基本信息
- 批准号:0900871
- 负责人:
- 金额:$ 30.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Piotr Hajlasz: NSF Proposal DMS-0900871Abstract:The theory of Sobolev mappings into Euclidean spaces, between smooth manifolds and between metric spaces plays an important role in the contemporary development of partial differential equations, calculus of variations, nonlinear elasticity, differential geometry, analysis on metric spaces, geometric typology and algebraic topology.The project focuses on a wide range of problems in the areas mentioned above. In particular the PI plans to investigate: (1) Regularity theory for variational problems for mappings between manifolds with a particular emphasis on problems with nonlinearity of the critical growth (n-harmonic mappings and H-surface system). (2) Degree and homotopy theory for weakly differentiable mappings between manifolds in the case in which regularity of mappings is not enough to guarantee integrability of the Jacobian. Connections to the topological structure of manifolds. (3) Classes of mappings that arise in the nonlinear elasticity. (4) Lipschitz approximation of Sobolev mappings into metric spaces and between metric spaces. In particular, approximation of mappings from the Euclidean space into the Heisenberg group. (5) Continuous, Sobolev and smooth surjections onto metric spaces. Construction of differentiable Peano-type mappings. In particular existence of smooth surjections between Carnot groups.At the beginning of XXth century, with a classical notion of differentiable functions, the theory of partial differential equations and calculus of variations came to a dead end. The further development was only possible with a suitable generalization of notion of the derivative. This led to the discovery of the Sobolev spaces. With the increasing variety of areas to which the theory of Sobolev spaces applies there are new possibilities to built bridges between different areas of mathematics, engineering and physics. One of the aims of the project is to develop such connections between fields of analysis, calculus of variations, geometry and topology. Collaboration with researchers from different institutions and countries is an essential part of the project. This will strengthen the cooperation of scientific institutions and give unique opportunity for the graduate students involved in the project not only to work in open problems at the frontiers of the contemporary mathematics, but also to establish contacts with researchers from all over the world. The outcomes of the project will be presented on conferences, workshops and schools. The PI has already been involved in organizations of several conferences and seminars devoted to similar topics.
Piotr Hajlasz:NSF提案DMS-0900871摘要:Sobolev映射到欧氏空间、光滑流形之间和度量空间之间的理论在偏微分方程、变分法、非线性弹性、微分几何、度量空间分析、几何类型学和代数拓扑学的当代发展中起着重要作用,该项目集中于上述领域的广泛问题.特别是PI计划研究:(1)流形之间映射的变分问题的正则性理论,特别强调临界增长的非线性问题(n-调和映射和H-曲面系统)。(2)在映射的正则性不足以保证雅可比矩阵的可积性的情况下,流形间弱可微映射的度与同伦理论。与流形拓扑结构的联系。(3)非线性弹性力学中出现的映射类。(4)Sobolev映射到度量空间和度量空间之间的Lipschitz逼近。特别是,近似映射从欧几里德空间到海森堡群。(5)度量空间上的连续、Sobolev和光滑满射。可微Peano型映射的构造特别是卡诺群之间光滑满射的存在性。世纪初,由于经典的可微函数概念,偏微分方程理论和变分学陷入了死胡同。进一步的发展是可能的,只有一个适当的推广概念的衍生物。这导致了Sobolev空间的发现。随着索伯列夫空间理论应用领域的日益多样化,在数学、工程和物理的不同领域之间建立桥梁有了新的可能性。该项目的目的之一是发展分析,变分法,几何和拓扑学领域之间的这种联系。与来自不同机构和国家的研究人员合作是该项目的重要组成部分。这将加强科学机构的合作,并为参与该项目的研究生提供独特的机会,不仅可以在当代数学前沿的开放问题上工作,还可以与来自世界各地的研究人员建立联系。该项目的成果将在会议、讲习班和学校中介绍。PI已经参与组织了几次专门讨论类似主题的会议和研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr Hajlasz其他文献
Piotr Hajlasz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr Hajlasz', 18)}}的其他基金
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
Weakly Differentiable Mappings and Functions: Analysis, Geometry, and Topology
弱可微映射和函数:分析、几何和拓扑
- 批准号:
1800457 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
Geometry and Topology of the Heisenberg Groups
海森堡群的几何和拓扑
- 批准号:
1500647 - 财政年份:2015
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
Sobolev spaces in analysis and geometry
分析和几何中的索博列夫空间
- 批准号:
1161425 - 财政年份:2012
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Domain理论与拓扑学研究
- 批准号:60473009
- 批准年份:2004
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 30.19万 - 项目类别:
Discovery Projects