Sobolev spaces in analysis and geometry
分析和几何中的索博列夫空间
基本信息
- 批准号:1161425
- 负责人:
- 金额:$ 23.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of Sobolev spaces plays a fundamental role in many areas of contemporary mathematics. Although it was created as a tool to study existence and regularity of solutions to partial differential equations and variational problems, the scope of applications goes far beyond that. The PI will focus on a variety of applications of the theory to questions that arise in a natural way in geometric analysis. More specifically the PI and his graduate students that are included in the project will study approximation of convex and subharmonic functions, the Liouville theorem for conformal mappings, Sobolev embedding theorems in irregular domains, Sobolev spaces on metric spaces, approximation of Sobolev mappings into metric spaces, the Lipschitz homotopy groups of the Heisenberg group and the Gromov conjecture about Holder continuous homeomorphisms of the Heisenberg group. The project, however, will not be restricted to these topics. Many new questions will emerge and some questions will have to be modified as a result of the investigation.The proposed research lies on the borderline of many areas of contemporary mathematics. When successful, it will create bridges between different areas of mathematics such as analysis, calculus of variations, topology, sub-Riemannian geometry, nonlinear elasticity and even numerical analysis. An important part of the project is to train graduate students and young scholars in these areas. The wide collaboration of the PI will strengthen scientific partnerships of research institutions within the U.S. and overseas. Results of the project will be made freely available as preprints and will be published in journals. Moreover the results be presented in conferences and lectures for the international audience.
Sobolev空间理论在当代数学的许多领域中起着基础性的作用。虽然它是作为研究偏微分方程和变分问题解的存在性和正则性的工具而创建的,但应用范围远远超出了这一点。PI将专注于该理论在几何分析中以自然方式出现的问题的各种应用。更具体地说,PI和他的研究生是包括在该项目将研究逼近凸和次调和函数,刘维定理的共形映射,索伯列夫嵌入定理在不规则域,索伯列夫空间的度量空间,逼近索伯列夫映射到度量空间,Lipschitz同伦群的海森堡群和格罗莫夫猜想的保持器连续同胚的海森堡群。然而,该项目将不限于这些主题。许多新问题将会出现,并且由于调查的结果,一些问题将不得不进行修改。拟议的研究处于当代数学许多领域的边缘。当成功时,它将在不同的数学领域之间建立桥梁,如分析,变分法,拓扑学,亚黎曼几何,非线性弹性甚至数值分析。该项目的一个重要部分是培训这些领域的研究生和青年学者。PI的广泛合作将加强美国和海外研究机构的科学伙伴关系。该项目的结果将以预印本形式免费提供,并将发表在期刊上。此外,还将在会议和讲座上向国际听众介绍成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr Hajlasz其他文献
Piotr Hajlasz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr Hajlasz', 18)}}的其他基金
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
$ 23.2万 - 项目类别:
Standard Grant
Weakly Differentiable Mappings and Functions: Analysis, Geometry, and Topology
弱可微映射和函数:分析、几何和拓扑
- 批准号:
1800457 - 财政年份:2018
- 资助金额:
$ 23.2万 - 项目类别:
Continuing Grant
Geometry and Topology of the Heisenberg Groups
海森堡群的几何和拓扑
- 批准号:
1500647 - 财政年份:2015
- 资助金额:
$ 23.2万 - 项目类别:
Continuing Grant
Geometry and topology of weakly differentiable mappings into Euclidean spaces, manifolds and metric spaces
欧几里得空间、流形和度量空间的弱可微映射的几何和拓扑
- 批准号:
0900871 - 财政年份:2009
- 资助金额:
$ 23.2万 - 项目类别:
Standard Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 23.2万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Standard Grant
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating Enlarged Perivascular Spaces as a Neuroimaging Biomarker of Cerebral Small Vessel Disease
研究扩大的血管周围空间作为脑小血管疾病的神经影像生物标志物
- 批准号:
10674098 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Standard Grant
Analysis on complicated spaces using geometry of path families
使用路径族几何分析复杂空间
- 批准号:
23KJ2011 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Translational control of a complete developing sensory circuit
完整发育中的感觉回路的平移控制
- 批准号:
10678098 - 财政年份:2023
- 资助金额:
$ 23.2万 - 项目类别:
Desingularization and applications. Analysis on and Geometry of singular spaces
去奇异化和应用。
- 批准号:
RGPIN-2018-04445 - 财政年份:2022
- 资助金额:
$ 23.2万 - 项目类别:
Discovery Grants Program - Individual