Complex Manifold Theory and Kaehler Geometry
复流形理论和凯勒几何
基本信息
- 批准号:0500964
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe project develops transcendental methods, such as multiplier ideal sheaves, to apply to problems in algebraic geometry and complex geometry, such as the finite generation of canonical rings, the Zariski nondensity of the union of all entire holomorphic curves in a compact complex manifold with positive canonical line bundle, the deformational invariance of plurigenera for compact Kaehler manifolds, and the relation between finite type condition of weakly pseudoconvex domains and subelliptic estimates from the viewpoint of complex Frobenius integrability theorem over Artinian subschemes.The investigations in this project are in the interface between severalcomplex variables, complex algebraic geometry, complex differential geometry, and partial differential equations. Besides applications to problems in algebraic geometry and complex geometry, a good understanding of multiplier ideal sheaves, especially those defined by differentiation, will introduce to partial differential equations new powerful tools. Multiplier ideal sheaves identify the higher-order directions of differentiation where estimates fail and then glue them together in global geometric entities with rich properties. They are able to provide global conditions for the solvability of partial differential equations instead of local conditions and will be especially useful for partial differential equations from global problems posed by any scientific field.
该项目发展了超越方法,如乘子理想层,以应用于代数几何和复几何中的问题,如标准环的有限生成,具有正标准线丛的紧致复流形中所有全纯曲线并的Zebrski非稠密性,紧致Kaehler流形的多属变形不变性,从复Frobenius可积性定理的观点出发,研究了弱伪凸域的有限型条件与次椭圆估计之间的关系,本项目的研究内容是多复变函数、复代数几何、复微分几何和偏微分方程之间的接口。 除了在代数几何和复几何中的应用外,对乘子理想层,特别是由微分定义的乘子理想层的良好理解,将为偏微分方程引入新的强大工具。乘子理想层识别估计失败的高阶微分方向,然后将它们粘合在具有丰富属性的全局几何实体中。他们能够提供全球条件的可解性偏微分方程,而不是当地的条件,将是特别有用的偏微分方程从全球问题所提出的任何科学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yum-Tong Siu其他文献
Extension of coherent analytic subsheaves
- DOI:
10.1007/bf01350816 - 发表时间:
1970-06-01 - 期刊:
- 影响因子:1.400
- 作者:
Yum-Tong Siu;Günther Trautmann - 通讯作者:
Günther Trautmann
Uniform estimates for the $$\bar \partial $$ -equation on domains with piecewise smooth strictly pseudoconvex boundaries
- DOI:
10.1007/bf01355986 - 发表时间:
1973-12-01 - 期刊:
- 影响因子:1.400
- 作者:
R. Michael Range;Yum-Tong Siu - 通讯作者:
Yum-Tong Siu
The $$\overline \partial$$ problem with uniform bounds on derivatives
- DOI:
10.1007/bf01362154 - 发表时间:
1974-06-01 - 期刊:
- 影响因子:1.400
- 作者:
Yum-Tong Siu - 通讯作者:
Yum-Tong Siu
Dimensions of sheaf cohomology groups under holomorphic deformation
- DOI:
10.1007/bf02052872 - 发表时间:
1971-07-01 - 期刊:
- 影响因子:1.400
- 作者:
Yum-Tong Siu - 通讯作者:
Yum-Tong Siu
C k approximation by holomorphic functions and $$\bar \partial $$ -closed forms onC k submanifolds of a complex manifold
- DOI:
10.1007/bf01360034 - 发表时间:
1974-03-01 - 期刊:
- 影响因子:1.400
- 作者:
R. Michael Range;Yum-Tong Siu - 通讯作者:
Yum-Tong Siu
Yum-Tong Siu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yum-Tong Siu', 18)}}的其他基金
Complex Manifold Theory and Kaehler Geometry
复流形理论和凯勒几何
- 批准号:
1001416 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
A Conference on d-Bar Estimates and their Applications to be held at Princeton University, on September 19-22, 2002
关于 d-Bar 估计及其应用的会议将于 2002 年 9 月 19 日至 22 日在普林斯顿大学举行
- 批准号:
0204043 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Complex Manifold Theory and Kaehler Geometry
复流形理论和凯勒几何
- 批准号:
0070518 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
- 批准号:
9500999 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Conference in Several Complex Variables
数学科学:多个复变量会议
- 批准号:
9115318 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
- 批准号:
9205682 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
- 批准号:
8907582 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
- 批准号:
8605461 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Analysis and Algebraic Geometry
数学科学:复分析和代数几何
- 批准号:
8304661 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于高速可重构匹配网络的VHF宽带多路跳频Manifold耦合器基础问题研究
- 批准号:61001012
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
2243650 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953210 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953189 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
- 批准号:
1812606 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Theory of operator manifold and its application to pattern recognition
算子流形理论及其在模式识别中的应用
- 批准号:
17H01760 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of an innovative four-dimensional imaging technique using the manifold theory and single-particle experimental data
利用流形理论和单粒子实验数据构建创新的四维成像技术
- 批准号:
16K20913 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Manifold signal processing theory concerning metric structure and its application to biological signal processing
度量结构的流形信号处理理论及其在生物信号处理中的应用
- 批准号:
26280054 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design integration for nonlinear control systems via invariant manifold theory and the development of computational platform
基于不变流形理论的非线性控制系统设计集成和计算平台的开发
- 批准号:
26289128 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Morava K-theory of the exceptional Lie group and flag manifold
异常李群和旗流形的 Morava K 理论
- 批准号:
24540102 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)