Complex Manifold Theory and Kaehler Geometry

复流形理论和凯勒几何

基本信息

  • 批准号:
    1001416
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator, Yum-Tong Siu, will continue his research in complex manifold theory and Kaehler geometry by applying recent transcendental methods to complex algebraic geometry on the one hand and applying algebraic-geometric methods to partial differential equations on the other. Some of the motivating problems for his work will be the abundance conjecture in complex algebraic geometry, the construction of rational curves in Fano manifolds by singularity-magnifying complex Monge-Ampere equations, the Green-Griffiths conjecture concerning entire holomorphic curves in manifolds of general type, the second main theorem of value distribution theory for moduli spaces of canonically polarized manifolds, the deformational invariance of plurigenera for compact Kaehler manifolds, the global nondeformability of irreducible compact Hermitian symmetric manifolds, and general regularity questions of the complex Neumann problem. The recent transcendental methods involve techniques of multiplier ideal sheaves which, in one direction, has already led to the solution of a number of longstanding open problems in complex algebraic geometry such as the deformational invariance of plurigenera for algebraic manifolds and the finite generation of canonical rings, and in the other direction, opened up a new way of applying algebraic-geometry methods to partial differential equations and settled some regularity questions of the complex Neumann problem.The proposed research is in the interface of algebraic geometry and analysis. Such an interface has been bringing about a high level of cross-fertilization of both fields. Experts in one field have been investigating and applying the methods of the other. This has led to the solution of some longstanding open problems which have been inaccessible to the techniques of only one field. On the one side of the interface, algebraic geometry studies algebraic structures, their classifications and relations. Analytic methods make it possible to construct and work with algebraic objects in algebraic-geometry problems by using limits, estimates, and optimization techniques of analysis. On the other side of the interface, analysis deals with partial differential equations and estimates. Some of the recent techniques in the interface involve multiplier ideal sheaves. Multiplier ideal sheaves identify the location and the order of failure of estimates in analysis and make it possible to formulate global conditions for the solvability and regularity of partial differential equations by using algebraic techniques. Besides opening up a new algebraic approach to problems in analysis, they provide powerful new tools useful for the investigation of partial differential equations from global problems posed by any scientific field. The PI will continue work with graduate students and junior researchers.
首席研究员萧雨棠将继续他在复流形理论和Kaehler几何方面的研究,一方面将最新的超越方法应用于复代数几何,另一方面将代数几何方法应用于偏微分方程组。一些激发他工作的问题将是复代数几何中的丰度猜想,通过奇点放大的复Monge-Ampere方程构造Fano流形中的有理曲线,关于一般类型流形中的全纯曲线的Green-Griffiths猜想,正则极化流形的模空间的值分布理论的第二主要定理,紧致Kaehler流形的多属元的形变不变性,不可约紧致Hermite对称流形的整体不可变形性,以及复Neumann问题的一般正则性问题。最近的超越方法涉及乘子理想层技术,一方面已经解决了复代数几何中一些长期悬而未决的问题,如代数流形的多亏格的变形不变性和正则环的有限生成;另一方面,在另一个方向上,开辟了将代数几何方法应用于偏微分方程组的新途径,解决了复杂Neumann问题的一些正则性问题。这样的界面一直在带来两个领域的高水平交叉受精。一个领域的专家一直在研究和应用另一个领域的方法。这导致了一些长期悬而未决的问题的解决,这些问题只有一个领域的技术无法解决。在界面的一侧,代数几何研究代数结构、它们的分类和关系。解析方法通过使用分析的极限、估计和最优化技术,使得在代数几何问题中构造和处理代数对象成为可能。在界面的另一边,分析处理偏微分方程式和估计。界面中的一些最新技术涉及乘数理想滑轮。乘子理想层确定了分析中估计的失败位置和失败顺序,并使利用代数技巧来表示偏微分方程解和正则性的整体条件成为可能。除了为分析中的问题开辟了一种新的代数方法之外,它们还提供了强大的新工具,可用于从任何科学领域提出的全球问题研究偏微分方程。国际和平研究所将继续与研究生和初级研究人员合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yum-Tong Siu其他文献

Extension of coherent analytic subsheaves
  • DOI:
    10.1007/bf01350816
  • 发表时间:
    1970-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yum-Tong Siu;Günther Trautmann
  • 通讯作者:
    Günther Trautmann
Uniform estimates for the $$\bar \partial $$ -equation on domains with piecewise smooth strictly pseudoconvex boundaries
  • DOI:
    10.1007/bf01355986
  • 发表时间:
    1973-12-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    R. Michael Range;Yum-Tong Siu
  • 通讯作者:
    Yum-Tong Siu
The $$\overline \partial$$ problem with uniform bounds on derivatives
  • DOI:
    10.1007/bf01362154
  • 发表时间:
    1974-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yum-Tong Siu
  • 通讯作者:
    Yum-Tong Siu
Dimensions of sheaf cohomology groups under holomorphic deformation
  • DOI:
    10.1007/bf02052872
  • 发表时间:
    1971-07-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yum-Tong Siu
  • 通讯作者:
    Yum-Tong Siu
C k approximation by holomorphic functions and $$\bar \partial $$ -closed forms onC k submanifolds of a complex manifold
  • DOI:
    10.1007/bf01360034
  • 发表时间:
    1974-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    R. Michael Range;Yum-Tong Siu
  • 通讯作者:
    Yum-Tong Siu

Yum-Tong Siu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yum-Tong Siu', 18)}}的其他基金

Complex Manifold Theory and Kaehler Geometry
复流形理论和凯勒几何
  • 批准号:
    0500964
  • 财政年份:
    2005
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
A Conference on d-Bar Estimates and their Applications to be held at Princeton University, on September 19-22, 2002
关于 d-Bar 估计及其应用的会议将于 2002 年 9 月 19 日至 22 日在普林斯顿大学举行
  • 批准号:
    0204043
  • 财政年份:
    2002
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Complex Manifold Theory and Kaehler Geometry
复流形理论和凯勒几何
  • 批准号:
    0070518
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
  • 批准号:
    9500999
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference in Several Complex Variables
数学科学:多个复变量会议
  • 批准号:
    9115318
  • 财政年份:
    1992
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
  • 批准号:
    9205682
  • 财政年份:
    1992
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
  • 批准号:
    8907582
  • 财政年份:
    1989
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Manifold Theory and Kaehler Geometry
数学科学:复流形理论和凯勒几何
  • 批准号:
    8605461
  • 财政年份:
    1986
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complex Analysis and Algebraic Geometry
数学科学:复分析和代数几何
  • 批准号:
    8304661
  • 财政年份:
    1983
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Functions of Several Complex Variables
多个复变量的函数
  • 批准号:
    7102603
  • 财政年份:
    1971
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

基于高速可重构匹配网络的VHF宽带多路跳频Manifold耦合器基础问题研究
  • 批准号:
    61001012
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
  • 批准号:
    2306278
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
  • 批准号:
    2243650
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
  • 批准号:
    1953210
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
  • 批准号:
    1953189
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
  • 批准号:
    1812606
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory of operator manifold and its application to pattern recognition
算子流形理论及其在模式识别中的应用
  • 批准号:
    17H01760
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of an innovative four-dimensional imaging technique using the manifold theory and single-particle experimental data
利用流形理论和单粒子实验数据构建创新的四维成像技术
  • 批准号:
    16K20913
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Manifold signal processing theory concerning metric structure and its application to biological signal processing
度量结构的流形信号处理理论及其在生物信号处理中的应用
  • 批准号:
    26280054
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design integration for nonlinear control systems via invariant manifold theory and the development of computational platform
基于不变流形理论的非线性控制系统设计集成和计算平台的开发
  • 批准号:
    26289128
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Morava K-theory of the exceptional Lie group and flag manifold
异常李群和旗流形的 Morava K 理论
  • 批准号:
    24540102
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了