Mathematical Problems from Statistical Mechanics
统计力学的数学问题
基本信息
- 批准号:0501168
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractKennedyThe problems to be studied include self-avoiding random walks, droplet states in the quantum Heisenberg ferromagnet and covering and packing problems in two and three dimensions. A self-avoiding walk is a model that exhibits critical phenomena and universality, two of the most important ideas in statistical mechanics. Understanding such models in two and three dimensions is a major problem in mathematical physics. Droplet states will be studied in the quantum Heisenberg ferromagnet, a model of how the spins of the electrons in a crystal can line up to produce ferromagnetism. Droplets refer to domains where the spins are aligned in a different direction from the prevailing direction. Such droplets have been studied extensively using classical statistical mechanics. However, electron spins are only properly described with quantum mechanics, and there are no mathematical results on quantum mechanical models in more than one dimension. We will study the quantum mechanical behavior of these droplets in two dimensions. The third area of research is in classical geometry, specifically covering and packing problems. An example of a packing problem is to ask how you should arrange discs of two different sizes in the plane so that they do not overlap, but cover as much of the plane as possible. Problems like this are simple to state, but notoriously difficult to solve.In the research proposed, mathematical techniques will be used to study problems whose origins are in statistical mechanics and condensed matter physics, and ideas developed in the study of physical problems will be used to attack questions in classical geometry. The work on self-avoiding walks will impact physics and physical chemistry since this is a good model for polymers in dilute solution. Simulations of self-avoiding walk models can lead to improvements in the algorithms, both for this model and for models in other fields. The code developed in these simulations will be made publicly available. The study of droplets in the quantum Heisenberg ferromagnet will impact our understanding of the physics, but it should also contribute to our understanding of more mathematical questions including degenerate perturbation theory and the existence of continuous spectrum. In the research on packing and covering problems, ideas developed in the study of frustrated spin systems will impact a completely different field. Frustration refers to spin systems which need to do one thing to minimize one part of their total energy but need to do something inconsistent to minimize another part. Mathematical physicists developed a technique for studying such systems which we will adapt to the packing and covering problems.
本文研究的问题包括自避免随机行走、量子海森堡铁磁体中的液滴态以及二维和三维的覆盖和填充问题。自回避行走是一个模型,它展示了临界现象和普适性,这是统计力学中最重要的两个概念。在二维和三维中理解这样的模型是数学物理中的一个主要问题。液滴态将在量子海森堡铁磁体中进行研究,这是一个关于晶体中电子自旋如何排列产生铁磁性的模型。液滴是指自旋在与主要方向不同的方向上对齐的域。这种液滴已被广泛研究使用经典统计力学。 然而,电子自旋只能用量子力学来描述,并且没有超过一维的量子力学模型的数学结果。我们将在二维空间中研究这些液滴的量子力学行为。第三个研究领域是经典几何,特别是覆盖和包装问题。一个包装问题的例子是问你应该如何安排两个不同大小的圆盘在平面上,使他们不重叠,但覆盖尽可能多的平面。这类问题说起来很简单,但解决起来却非常困难。在这项研究中,数学技术将用于研究起源于统计力学和凝聚态物理学的问题,而在物理问题研究中发展起来的思想将用于解决经典几何学中的问题。自回避行走的工作将影响物理学和物理化学,因为这是稀溶液中聚合物的一个很好的模型。自我避免步行模型的模拟可以导致算法的改进,无论是对于该模型还是其他领域的模型。在这些模拟中开发的代码将公开提供。量子海森堡铁磁体中液滴的研究将影响我们对物理学的理解,但它也应该有助于我们理解更多的数学问题,包括简并微扰理论和连续谱的存在。在填充和覆盖问题的研究中,在研究受抑自旋系统中发展起来的思想将影响一个完全不同的领域。挫折是指自旋系统需要做一件事来最小化其总能量的一部分,但需要做一些不一致的事情来最小化另一部分。数学物理学家发展了一种研究这类系统的技术,我们将把它应用于包装和覆盖问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Kennedy其他文献
1015 Two- vs. five-fraction stereotactic body radiation therapy for prostate cancer: the TOFFEE individual patient data meta-analysis of prospective trials
1015前列腺癌的两次分割与五次分割立体定向体部放疗:前瞻性试验的TOFFEE个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00244-0 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;Wee Loon Ong;Thomas Kennedy;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Meghan Kulasingham-Poon;Andrew Loblaw - 通讯作者:
Andrew Loblaw
1033 Stereotactic body radiotherapy vs HDR brachytherapy for prostate cancer: the SHERBET individual patient data meta-analysis of five prospective trials
1033 立体定向体部放疗与高剂量率近距离放疗治疗前列腺癌:五项前瞻性试验的SHERBET个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00259-2 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;John M. Hudson;Wee Loon Ong;Thomas Kennedy;Joelle Helou;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Andrew Loblaw - 通讯作者:
Andrew Loblaw
Dark spins come to light
黑暗的旋转体曝光
- DOI:
10.1038/nphys159 - 发表时间:
2005-11-01 - 期刊:
- 影响因子:18.400
- 作者:
Thomas Kennedy - 通讯作者:
Thomas Kennedy
Pelvic Regional Control With 25 Gy in 5 Fractions in Stereotactic Radiation Therapy for High-Risk Prostate Cancer: Pooled Prospective Outcomes From the SHARP Consortium
立体定向放射治疗高危前列腺癌中25Gy分5次的盆腔区域控制:来自SHARP联盟的汇总前瞻性结果
- DOI:
10.1016/j.ijrobp.2024.12.018 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.500
- 作者:
Vedang Murthy;Indranil Mallick;Priyamvada Maitre;Gargee Mulye;Moses Arunsingh;Luca Valle;Michael Steinberg;Thomas Kennedy;Andrew Loblaw;Amar U. Kishan - 通讯作者:
Amar U. Kishan
A Survey of Perspectives and Educational Needs of Canadian Oncology Residents on Artificial Intelligence
- DOI:
10.1007/s13187-024-02509-7 - 发表时间:
2024-09-30 - 期刊:
- 影响因子:1.300
- 作者:
Fernanda M. Favorito;Laura Collie;Thomas Kennedy;Jacqueline J. Nabhen;Amir Safavi;Giovanni G. Cerri;Wilma Hopman;Fábio Y. Moraes - 通讯作者:
Fábio Y. Moraes
Thomas Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Kennedy', 18)}}的其他基金
Conformal invariance and the renormalization group in some critical systems
一些关键系统中的共形不变性和重整化群
- 批准号:
1500850 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Critical and near critical systems in statistical mechanics
统计力学中的临界和近临界系统
- 批准号:
0758649 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Macroscopic Properties of Quantum Mechanical Systems
量子力学系统的宏观特性
- 批准号:
0601075 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Problems in Quantum and Classical Statistical Mechanics
量子和经典统计力学问题
- 批准号:
0201566 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
XIII International Congress on Mathematical Physics, 17-22 July, 2000, London, UK: Travel Funds
第十三届国际数学物理大会,2000 年 7 月 17-22 日,英国伦敦:旅行基金
- 批准号:
9988119 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Crystalline Order in Classical and Quantum Mechanical Systems
经典和量子力学系统中的晶序
- 批准号:
9970608 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Mechanics of Classical and Quantum Lattice Systems
数学科学:经典和量子晶格系统的统计力学
- 批准号:
9623509 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Itinerant Electron Systems and Quantum Mechanical Spin Systems
数学科学:巡回电子系统和量子机械自旋系统
- 批准号:
9303051 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Quantum Mechanical Classical Lattice Spin Systems
数学科学:量子力学经典晶格自旋系统
- 批准号:
9103621 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Classical and Quantum Mechanical Lattice Spin Systems
数学科学:经典和量子机械晶格自旋系统
- 批准号:
8902248 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming Problems and Statistical Science.
集值图的非线性标化方法及其在数学规划问题和统计科学中的应用研究。
- 批准号:
17540108 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Problems in Nonequilibrium Statistical Mechanics
非平衡统计力学中的数学问题
- 批准号:
0306540 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems in Statistical Mechanics and Quantum Theory
统计力学和量子理论中的数学问题
- 批准号:
9705779 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Statistical Theory and Methods for Errors in Variables Regression and other Multivariate Inference Problems
数学科学:变量回归和其他多元推理问题中误差的统计理论和方法
- 批准号:
9504924 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Computational Techniques from Geometry and Statistical Physics Applied to Fluid Mechanics and Interface Problems
数学科学:几何和统计物理的计算技术应用于流体力学和界面问题
- 批准号:
9504950 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: "Markov Dependence in Statistics andInformation Theory and Statistical Problems in Physical Mapping"
数学科学:“统计中的马尔可夫依赖性和信息论以及物理绘图中的统计问题”
- 批准号:
9322817 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Problems in Statistical Mechanics and Condensed Matter Theory
数学科学:统计力学和凝聚态理论中的数学问题
- 批准号:
9403842 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Statistical Problems in Genetics and Molecular Biology
数学科学:遗传学和分子生物学中的统计问题
- 批准号:
9404267 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Statistical Modeling
数学科学:统计建模问题
- 批准号:
9306196 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant