Conformal invariance and the renormalization group in some critical systems

一些关键系统中的共形不变性和重整化群

基本信息

  • 批准号:
    1500850
  • 负责人:
  • 金额:
    $ 36.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Many models in physics are inherently discrete at the very smallest scale (typically the size of an atom) and there is inherent randomness at this discrete level. At the macroscopic level the randomness is typically not seen. But under certain conditions this randomness manifests itself at the macroscopic scale. This is known as a critical phenomena. For example, the spins in a magnetic material have randomness in their orientation. At a certain temperature these spins can align with each other to produce macroscopic magnetic domains that play a crucial role in technological applications such as hard drives. The randomness seen at the macroscopic scale often does not depend on the details of the microscopic randomness. In physics this is called universality and has developed into a key idea in the understanding of critical phenomena. The renormalization group is set of methods from physics that has become the basis for the modern understanding of both critical phenomena and of quantum field theory - the theory of elementary particles. Despite the tremendous success of the renormalization group in physics, we do not have a deep mathematical understanding of this set of ideas. This research will further the mathematical development and understanding of this set of ideas and methods and use them to understand the mathematics of critical phenomena in models such as self-avoiding random walks and Ising models of magnetic spins.Most of the research will be devoted to random walk models and Ising-type models. The smart kinetic walk (also known as a limiting case of the Laplacian-b random walk) is a dynamic model for self-avoiding walks. On the hexagonal lattice it is closely related to percolation. Percolation methods have been used to prove its scaling limit is the Schramm-Loewner evolution with parameter value 6. The research will study this scaling limit on other lattices and for generalizations of the transition probabilities. The goal is to understand the universality of this scaling limit. For the ordinary random walk the scaling limit of the exit distribution for a domain is harmonic measure. Another goal of the research is to understand the first order correction for this convergence for both the ordinary random walk and the smart kinetic walk. The research will also study real space renormalization groups for Ising type models, in particular exact renormalization group transformations in one and two dimensions. These transformation have the potential advantage that the map would act on a finite dimensional space. The goal is to prove that the map can be rigorously defined and then take advantage of the finite dimensional nature to prove existence of a fixed point and all the exciting consequences that follow from this existence. Finally the research will study Schramm-Loewner evolution as a renormalization group fixed point. This stochastic process is known to be the scaling limit of many critical models. The goal here is to define a renormalization group map that has this process as a fixed point and then use this map to understand models that are near criticality.
物理学中的许多模型在最小尺度(通常是原子的大小)上本质上是离散的,并且在这种离散水平上存在固有的随机性。在宏观水平上,通常看不到随机性。但在某些条件下,这种随机性在宏观尺度上表现出来。这被称为临界现象。例如,磁性材料中的自旋在其取向上具有随机性。在一定温度下,这些自旋可以相互对齐,产生宏观磁畴,在硬盘驱动器等技术应用中发挥关键作用。在宏观尺度上看到的随机性往往不依赖于微观随机性的细节。在物理学中,这被称为普遍性,并已发展成为理解临界现象的关键思想。重整化群是物理学中的一套方法,它已经成为现代理解临界现象和量子场论(基本粒子理论)的基础。尽管重正化群在物理学中取得了巨大的成功,但我们对这组思想并没有深刻的数学理解。本研究将进一步数学发展和理解这套思想和方法,并使用它们来理解数学的关键现象的模型,如自避免随机行走和伊辛模型的磁自旋。大部分的研究将致力于随机行走模型和伊辛型模型。智能动态行走(也称为拉普拉斯-b随机行走的极限情况)是一种自我回避行走的动态模型。在六方晶格上,它与渗流密切相关。用逾渗方法证明了它的标度极限是参数值为6的Schramm-Loewner演化。这项研究将研究这种缩放限制在其他晶格和一般化的过渡概率。我们的目标是了解这种缩放限制的普遍性。对于一般的随机游动,区域出口分布的标度极限是调和测度。研究的另一个目标是了解普通随机行走和智能动能行走收敛的一阶校正。研究还将研究伊辛型模型的真实的空间重整化群,特别是一维和二维的精确重整化群变换。这些变换的潜在优点是映射可以作用于有限维空间。目标是证明映射可以被严格定义,然后利用有限维的性质来证明不动点的存在性以及由此产生的所有令人兴奋的后果。最后研究Schramm-Loewner演化作为重整化群不动点的问题。这个随机过程被认为是许多临界模型的尺度极限。这里的目标是定义一个重正化群映射,将这个过程作为一个固定点,然后使用这个映射来理解接近临界的模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Kennedy其他文献

1015 Two- vs. five-fraction stereotactic body radiation therapy for prostate cancer: the TOFFEE individual patient data meta-analysis of prospective trials
1015前列腺癌的两次分割与五次分割立体定向体部放疗:前瞻性试验的TOFFEE个体患者数据荟萃分析
  • DOI:
    10.1016/s0167-8140(25)00244-0
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;Wee Loon Ong;Thomas Kennedy;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Meghan Kulasingham-Poon;Andrew Loblaw
  • 通讯作者:
    Andrew Loblaw
1033 Stereotactic body radiotherapy vs HDR brachytherapy for prostate cancer: the SHERBET individual patient data meta-analysis of five prospective trials
1033 立体定向体部放疗与高剂量率近距离放疗治疗前列腺癌:五项前瞻性试验的SHERBET个体患者数据荟萃分析
  • DOI:
    10.1016/s0167-8140(25)00259-2
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;John M. Hudson;Wee Loon Ong;Thomas Kennedy;Joelle Helou;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Andrew Loblaw
  • 通讯作者:
    Andrew Loblaw
Dark spins come to light
黑暗的旋转体曝光
  • DOI:
    10.1038/nphys159
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Thomas Kennedy
  • 通讯作者:
    Thomas Kennedy
Pelvic Regional Control With 25 Gy in 5 Fractions in Stereotactic Radiation Therapy for High-Risk Prostate Cancer: Pooled Prospective Outcomes From the SHARP Consortium
立体定向放射治疗高危前列腺癌中25Gy分5次的盆腔区域控制:来自SHARP联盟的汇总前瞻性结果
  • DOI:
    10.1016/j.ijrobp.2024.12.018
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Vedang Murthy;Indranil Mallick;Priyamvada Maitre;Gargee Mulye;Moses Arunsingh;Luca Valle;Michael Steinberg;Thomas Kennedy;Andrew Loblaw;Amar U. Kishan
  • 通讯作者:
    Amar U. Kishan
A Survey of Perspectives and Educational Needs of Canadian Oncology Residents on Artificial Intelligence
  • DOI:
    10.1007/s13187-024-02509-7
  • 发表时间:
    2024-09-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Fernanda M. Favorito;Laura Collie;Thomas Kennedy;Jacqueline J. Nabhen;Amir Safavi;Giovanni G. Cerri;Wilma Hopman;Fábio Y. Moraes
  • 通讯作者:
    Fábio Y. Moraes

Thomas Kennedy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Kennedy', 18)}}的其他基金

Critical and near critical systems in statistical mechanics
统计力学中的临界和近临界系统
  • 批准号:
    0758649
  • 财政年份:
    2008
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
Macroscopic Properties of Quantum Mechanical Systems
量子力学系统的宏观特性
  • 批准号:
    0601075
  • 财政年份:
    2006
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
Mathematical Problems from Statistical Mechanics
统计力学的数学问题
  • 批准号:
    0501168
  • 财政年份:
    2005
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Problems in Quantum and Classical Statistical Mechanics
量子和经典统计力学问题
  • 批准号:
    0201566
  • 财政年份:
    2002
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
XIII International Congress on Mathematical Physics, 17-22 July, 2000, London, UK: Travel Funds
第十三届国际数学物理大会,2000 年 7 月 17-22 日,英国伦敦:旅行基金
  • 批准号:
    9988119
  • 财政年份:
    2000
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Crystalline Order in Classical and Quantum Mechanical Systems
经典和量子力学系统中的晶序
  • 批准号:
    9970608
  • 财政年份:
    1999
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Mechanics of Classical and Quantum Lattice Systems
数学科学:经典和量子晶格系统的统计力学
  • 批准号:
    9623509
  • 财政年份:
    1996
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Itinerant Electron Systems and Quantum Mechanical Spin Systems
数学科学:巡回电子系统和量子机械自旋系统
  • 批准号:
    9303051
  • 财政年份:
    1993
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Quantum Mechanical Classical Lattice Spin Systems
数学科学:量子力学经典晶格自旋系统
  • 批准号:
    9103621
  • 财政年份:
    1991
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Classical and Quantum Mechanical Lattice Spin Systems
数学科学:经典和量子机械晶格自旋系统
  • 批准号:
    8902248
  • 财政年份:
    1989
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant

相似海外基金

Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
  • 批准号:
    DP220101721
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Projects
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
  • 批准号:
    DP230101629
  • 财政年份:
    2023
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Projects
EAR-PF: Are large earthquakes like small earthquakes? Using synthetic earthquakes to resolve discrepancies in observations of earthquake stress drop magnitude-invariance
EAR-PF:大地震和小地震一样吗?
  • 批准号:
    2204102
  • 财政年份:
    2022
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Fellowship Award
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Standard Grant
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2022
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2022
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2022
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2021
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
  • 批准号:
    RGPIN-2018-04122
  • 财政年份:
    2021
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
Treeings, quasi-invariance, and ergodic combinatorics
树、拟不变性和遍历组合学
  • 批准号:
    RGPIN-2020-07120
  • 财政年份:
    2021
  • 资助金额:
    $ 36.14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了