Crystalline Order in Classical and Quantum Mechanical Systems
经典和量子力学系统中的晶序
基本信息
- 批准号:9970608
- 负责人:
- 金额:$ 9.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9970608 Principal Investigator: Thomas G. KennedyAbstract: This research will focus on how periodic structures arise in problems such as crystallization and sphere packing. One approach to understanding how the lattice structure of crystals comes about is to assume that the quantum mechanics produces an effective classical interaction between molecules. Then one studies the classical problem of how to arrange the molecules to minimize this classical energy. Even this classical problem is quite hard, containing the sphere packing problem as a special case. This research will use ideas from statistical mechanics for frustrated systems to prove the optimal configuration for some of these classical problems. A new, simpler proof of the sphere packing problem in three dimensions may be possible by these methods. The role of quantum mechanics in crystal formation has been investigated in the Falicov-Kimball model. Another goal of this research is to understand when this model has a periodic ground state and when it does not. The Falicov-Kimball model is defined on a lattice, but in nature crystals form in space which has no a priori lattice structure. A continuum Falicov-Kimball type model will be investigated. In this model the ions may occupy any site in space rather than just the sites in some lattice, and then the electrons hop between the ions. The goal of introducing and studying this model is to have a quantum mechanical model that (hopefully) exhibits periodic ground states. This research will focus on how periodic structures like crystals arise. One of the most famous of these problems is the sphere packing problem. Given a large number of spheres of the same size, what is the best way to arrange them so that they occupy the smallest volume. For example, is the way one finds cannonballs stacked at a Civil War battlefield optimal in this regard? Although this problem is hundreds of years old and quite simple to state, it was only solved in the past year. The classical crystal problem is similar. One is given a bunch of atoms and a force law between them. The problem is to find the arrangement which minimizes the total energy of the atoms. The sphere packing problem has important applications to coding theory, and the crystal problem is at the heart of understanding how the crystalline structures that one observes in nature arise. These problems may also be thought of as optimization problems in a large number of variables. This research will develop techniques for establishing the solutions of such optimization problems. The problems are all difficult because they are frustrated -- the best arrangment for a small number of atoms or spheres is not the same as their best arrangment when they are part of a larger group. Techniques developed in statistical mechanics to study such frustrated systems will be adapted to these problems. Surprisingly, it appears that in all these problems the best arrangement is a relatively simple periodic one, even though one allows all possible arrangements, however complicated. This award is jointly funded by the Analysis Program in the Division of Mathematical Sciences and the Mathematical Physics Program in the Division of Physics.
提案:DMS-9970608主要研究者:托马斯G.摘要:这项研究将集中在如何周期性结构出现的问题,如结晶和球包装。理解晶体的晶格结构是如何产生的一种方法是假设量子力学在分子之间产生有效的经典相互作用。然后研究如何排列分子以最小化这个经典能量的经典问题。即使是这个经典的问题是相当困难的,包含球包装问题作为一个特殊情况。这项研究将使用统计力学的想法,挫折系统,以证明这些经典问题的最佳配置。一个新的,更简单的证明在三维球包装问题可能是由这些方法。在Falicov-Kimball模型中研究了量子力学在晶体形成中的作用。这项研究的另一个目标是了解这个模型何时具有周期性基态,何时不具有。Falicov-Kimball模型是在晶格上定义的,但在自然界中,晶体是在没有先验晶格结构的空间中形成的。一个连续Falicov-Kimball型模型将被研究。在这个模型中,离子可以占据空间中的任何位置,而不仅仅是某些晶格中的位置,然后电子在离子之间跳跃。引入和研究这个模型的目的是有一个量子力学模型,(希望)表现出周期性的基态。这项研究将重点关注晶体等周期性结构如何产生。这些问题中最著名的一个是球填充问题。给定大量相同大小的球体,如何排列它们,使它们占据最小的体积?例如,在内战战场上发现炮弹堆积的方式在这方面是最佳的吗?虽然这个问题有几百年的历史,而且说起来也很简单,但直到去年才得到解决。经典的晶体问题与此类似。一个是给定一堆原子和它们之间的力定律。问题是要找出使原子总能量最小的排列方式。球体填充问题在编码理论中有重要的应用,而晶体问题是理解人们在自然界中观察到的晶体结构是如何产生的核心。这些问题也可以被认为是大量变量的优化问题。这项研究将开发技术,建立这样的优化问题的解决方案。这些问题之所以困难,是因为它们都是失败的--对少数原子或球体的最佳解释,与它们作为较大群体的一部分时的最佳解释是不一样的。在统计力学中发展起来的研究这种受挫折系统的技术将适用于这些问题。令人惊讶的是,在所有这些问题中,最好的安排似乎是一个相对简单的周期性安排,尽管人们允许所有可能的安排,无论多么复杂。该奖项由数学科学部的分析计划和物理部的数学物理计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Kennedy其他文献
1015 Two- vs. five-fraction stereotactic body radiation therapy for prostate cancer: the TOFFEE individual patient data meta-analysis of prospective trials
1015前列腺癌的两次分割与五次分割立体定向体部放疗:前瞻性试验的TOFFEE个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00244-0 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;Wee Loon Ong;Thomas Kennedy;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Meghan Kulasingham-Poon;Andrew Loblaw - 通讯作者:
Andrew Loblaw
1033 Stereotactic body radiotherapy vs HDR brachytherapy for prostate cancer: the SHERBET individual patient data meta-analysis of five prospective trials
1033 立体定向体部放疗与高剂量率近距离放疗治疗前列腺癌:五项前瞻性试验的SHERBET个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00259-2 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;John M. Hudson;Wee Loon Ong;Thomas Kennedy;Joelle Helou;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Andrew Loblaw - 通讯作者:
Andrew Loblaw
Dark spins come to light
黑暗的旋转体曝光
- DOI:
10.1038/nphys159 - 发表时间:
2005-11-01 - 期刊:
- 影响因子:18.400
- 作者:
Thomas Kennedy - 通讯作者:
Thomas Kennedy
Pelvic Regional Control With 25 Gy in 5 Fractions in Stereotactic Radiation Therapy for High-Risk Prostate Cancer: Pooled Prospective Outcomes From the SHARP Consortium
立体定向放射治疗高危前列腺癌中25Gy分5次的盆腔区域控制:来自SHARP联盟的汇总前瞻性结果
- DOI:
10.1016/j.ijrobp.2024.12.018 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.500
- 作者:
Vedang Murthy;Indranil Mallick;Priyamvada Maitre;Gargee Mulye;Moses Arunsingh;Luca Valle;Michael Steinberg;Thomas Kennedy;Andrew Loblaw;Amar U. Kishan - 通讯作者:
Amar U. Kishan
A Survey of Perspectives and Educational Needs of Canadian Oncology Residents on Artificial Intelligence
- DOI:
10.1007/s13187-024-02509-7 - 发表时间:
2024-09-30 - 期刊:
- 影响因子:1.300
- 作者:
Fernanda M. Favorito;Laura Collie;Thomas Kennedy;Jacqueline J. Nabhen;Amir Safavi;Giovanni G. Cerri;Wilma Hopman;Fábio Y. Moraes - 通讯作者:
Fábio Y. Moraes
Thomas Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Kennedy', 18)}}的其他基金
Conformal invariance and the renormalization group in some critical systems
一些关键系统中的共形不变性和重整化群
- 批准号:
1500850 - 财政年份:2015
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Critical and near critical systems in statistical mechanics
统计力学中的临界和近临界系统
- 批准号:
0758649 - 财政年份:2008
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Macroscopic Properties of Quantum Mechanical Systems
量子力学系统的宏观特性
- 批准号:
0601075 - 财政年份:2006
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Mathematical Problems from Statistical Mechanics
统计力学的数学问题
- 批准号:
0501168 - 财政年份:2005
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Problems in Quantum and Classical Statistical Mechanics
量子和经典统计力学问题
- 批准号:
0201566 - 财政年份:2002
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
XIII International Congress on Mathematical Physics, 17-22 July, 2000, London, UK: Travel Funds
第十三届国际数学物理大会,2000 年 7 月 17-22 日,英国伦敦:旅行基金
- 批准号:
9988119 - 财政年份:2000
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Statistical Mechanics of Classical and Quantum Lattice Systems
数学科学:经典和量子晶格系统的统计力学
- 批准号:
9623509 - 财政年份:1996
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Itinerant Electron Systems and Quantum Mechanical Spin Systems
数学科学:巡回电子系统和量子机械自旋系统
- 批准号:
9303051 - 财政年份:1993
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quantum Mechanical Classical Lattice Spin Systems
数学科学:量子力学经典晶格自旋系统
- 批准号:
9103621 - 财政年份:1991
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical and Quantum Mechanical Lattice Spin Systems
数学科学:经典和量子机械晶格自旋系统
- 批准号:
8902248 - 财政年份:1989
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
$ 9.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tuning order from disordered ground states in geometrically frustrated classical "non-hbar" materials
从几何受挫经典“非 hbar”材料中的无序基态调整顺序
- 批准号:
EP/M01052X/1 - 财政年份:2015
- 资助金额:
$ 9.68万 - 项目类别:
Fellowship
Realizing the classical study of ontology models in Japanese and Chinese higher-order.
实现日语和汉语高阶本体模型的经典研究。
- 批准号:
23240032 - 财政年份:2011
- 资助金额:
$ 9.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Order and Chaos in Classical and Quantum Mechanics
经典与量子力学中的秩序与混沌
- 批准号:
0757752 - 财政年份:2008
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Order and Chaos in Classical and Quantum Mechanics
经典与量子力学中的秩序与混沌
- 批准号:
0457070 - 财政年份:2005
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Order and Chaos in Classical and Quantum Systems
经典和量子系统中的秩序与混沌
- 批准号:
0140329 - 财政年份:2002
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Order and Chaos in Classical and Quantum Mechanics
经典与量子力学中的秩序与混沌
- 批准号:
9876925 - 财政年份:1999
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Order and Chaos in Classical and Quantum Mechanics
经典与量子力学中的秩序与混沌
- 批准号:
9630372 - 财政年份:1996
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant
Fluctuation, Correlation, and Order in Dense Quantum and Classical Systems
稠密量子和经典系统中的涨落、相关性和秩序
- 批准号:
9319864 - 财政年份:1994
- 资助金额:
$ 9.68万 - 项目类别:
Continuing grant
Order and Chaos in Classical and Quantum Mechanics
经典与量子力学中的秩序与混沌
- 批准号:
9305689 - 财政年份:1993
- 资助金额:
$ 9.68万 - 项目类别:
Continuing Grant