Macroscopic Properties of Quantum Mechanical Systems
量子力学系统的宏观特性
基本信息
- 批准号:0601075
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three aspects of systems with large numbers of quantum particles will be considered: Non-equilibrium transport properties, the behavior of bosonic particles at low temperatures, and properties of the discrete Laplacian. We will study transport processes that take place in thermal contacts or tunneling junctions between several macroscopically extended metals at different temperatures and chemical potentials. A goal is to better understand the Onsager relations, which claim a certain symmetry in the dependence of currents from thermodynamic forces. Systems of interacting bosons will be considered in the Feynman-Kac representation. We will investigate the links between the following three approaches to Bose-Einstein condensation: Feynman's notion of infinite cycles; Bogolubov's approximations that result in a gas of excitations with a linear dispersion relation; and Penrose and Onsager's notion of off-diagonal long-range order. Finally, we will study the sum of lowest eigenvalues of the discrete Laplacian on arbitrary finite subsets of the cubic lattice. It represents the ground state energy of non-interacting electrons. The goal is to exhibit the effects of the boundary.brbrThe quantum world is a strange one, and many physical experiments defy intuition. General knowledge of quantum mechanical systems and the ability to study them experimentally considerably benefit from theoretical investigations. This study in mathematical physics is centered on the fact that macroscopic quantities are given by averages over the contribution of a huge number of microscopic particles, and these averages can be computed with the tools of statistical mechanics. One aspect of this project is the development of the mathematical description of systems involving very many particles. Another aspect is the study of systems of bosonic particles, such as helium, whose low-temperature behavior has recently attracted much attention. We will consider geometric approaches where quantum particles are represented by space-time trajectories with arbitrary winding numbers. The goal is a deeper understanding of the Bose-Einstein condensation in systems of interacting particles.
大量量子粒子系统的三个方面将被考虑:非平衡输运性质,玻色子粒子在低温下的行为,以及离散拉普拉斯算子的性质。 我们将研究在不同温度和化学势下,几种宏观延伸金属之间的热接触或隧道结中发生的输运过程。 一个目标是更好地理解昂萨格关系,其中声称一定的对称性,从热力学力的电流的依赖。 相互作用玻色子系统将在费曼-卡茨表示中考虑。 我们将研究以下三种方法之间的联系玻色-爱因斯坦凝聚:费曼的无限循环的概念; Bogolubov的近似,导致气体的激发与线性色散关系;和彭罗斯和Onsager的概念的非对角长程秩序。 最后,我们将研究立方格的任意有限子集上的离散拉普拉斯算子的最低特征值之和。 它表示非相互作用电子的基态能量。 我们的目标是展示边界的影响。brbr量子世界是一个奇怪的世界,许多物理实验违背了直觉。 量子力学系统的一般知识和实验研究它们的能力大大受益于理论研究。 这个数学物理学的研究集中在这样一个事实上,即宏观量是由大量微观粒子的贡献的平均值给出的,这些平均值可以用统计力学的工具来计算。 该项目的一个方面是发展涉及非常多粒子的系统的数学描述。 另一个方面是玻色子系统的研究,如氦,其低温行为最近引起了人们的广泛关注。 我们将考虑几何方法,其中量子粒子由具有任意缠绕数的时空轨迹表示。 目标是更深入地了解相互作用粒子系统中的玻色-爱因斯坦凝聚。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Kennedy其他文献
1015 Two- vs. five-fraction stereotactic body radiation therapy for prostate cancer: the TOFFEE individual patient data meta-analysis of prospective trials
1015前列腺癌的两次分割与五次分割立体定向体部放疗:前瞻性试验的TOFFEE个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00244-0 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;Wee Loon Ong;Thomas Kennedy;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Meghan Kulasingham-Poon;Andrew Loblaw - 通讯作者:
Andrew Loblaw
1033 Stereotactic body radiotherapy vs HDR brachytherapy for prostate cancer: the SHERBET individual patient data meta-analysis of five prospective trials
1033 立体定向体部放疗与高剂量率近距离放疗治疗前列腺癌:五项前瞻性试验的SHERBET个体患者数据荟萃分析
- DOI:
10.1016/s0167-8140(25)00259-2 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Cristian Udovicich;Patrick Cheung;William Chu;Hans Chung;Jay Detsky;Stanley Liu;Gerard Morton;Ewa Szumacher;Chia-Lin Tseng;Danny Vesprini;John M. Hudson;Wee Loon Ong;Thomas Kennedy;Joelle Helou;Melanie Davidson;Ananth Ravi;Merrylee McGuffin;Liying Zhang;Alexandre Mamedov;Andrea Deabreu;Andrew Loblaw - 通讯作者:
Andrew Loblaw
Dark spins come to light
黑暗的旋转体曝光
- DOI:
10.1038/nphys159 - 发表时间:
2005-11-01 - 期刊:
- 影响因子:18.400
- 作者:
Thomas Kennedy - 通讯作者:
Thomas Kennedy
Pelvic Regional Control With 25 Gy in 5 Fractions in Stereotactic Radiation Therapy for High-Risk Prostate Cancer: Pooled Prospective Outcomes From the SHARP Consortium
立体定向放射治疗高危前列腺癌中25Gy分5次的盆腔区域控制:来自SHARP联盟的汇总前瞻性结果
- DOI:
10.1016/j.ijrobp.2024.12.018 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.500
- 作者:
Vedang Murthy;Indranil Mallick;Priyamvada Maitre;Gargee Mulye;Moses Arunsingh;Luca Valle;Michael Steinberg;Thomas Kennedy;Andrew Loblaw;Amar U. Kishan - 通讯作者:
Amar U. Kishan
A Survey of Perspectives and Educational Needs of Canadian Oncology Residents on Artificial Intelligence
- DOI:
10.1007/s13187-024-02509-7 - 发表时间:
2024-09-30 - 期刊:
- 影响因子:1.300
- 作者:
Fernanda M. Favorito;Laura Collie;Thomas Kennedy;Jacqueline J. Nabhen;Amir Safavi;Giovanni G. Cerri;Wilma Hopman;Fábio Y. Moraes - 通讯作者:
Fábio Y. Moraes
Thomas Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Kennedy', 18)}}的其他基金
Conformal invariance and the renormalization group in some critical systems
一些关键系统中的共形不变性和重整化群
- 批准号:
1500850 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Critical and near critical systems in statistical mechanics
统计力学中的临界和近临界系统
- 批准号:
0758649 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Problems from Statistical Mechanics
统计力学的数学问题
- 批准号:
0501168 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Quantum and Classical Statistical Mechanics
量子和经典统计力学问题
- 批准号:
0201566 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
XIII International Congress on Mathematical Physics, 17-22 July, 2000, London, UK: Travel Funds
第十三届国际数学物理大会,2000 年 7 月 17-22 日,英国伦敦:旅行基金
- 批准号:
9988119 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Crystalline Order in Classical and Quantum Mechanical Systems
经典和量子力学系统中的晶序
- 批准号:
9970608 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Mechanics of Classical and Quantum Lattice Systems
数学科学:经典和量子晶格系统的统计力学
- 批准号:
9623509 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Itinerant Electron Systems and Quantum Mechanical Spin Systems
数学科学:巡回电子系统和量子机械自旋系统
- 批准号:
9303051 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Quantum Mechanical Classical Lattice Spin Systems
数学科学:量子力学经典晶格自旋系统
- 批准号:
9103621 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Classical and Quantum Mechanical Lattice Spin Systems
数学科学:经典和量子机械晶格自旋系统
- 批准号:
8902248 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
- 批准号:
2340733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum thermodynamical framework for understanding off-equilibrium properties of living systems
用于理解生命系统非平衡特性的量子热力学框架
- 批准号:
2896340 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
- 批准号:
23H01802 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
- 批准号:
2308540 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Elucidation of the origin of Anomalous Microwave Emission: Pioneering the theory on quantum properties of interstellar amorphous dust
阐明异常微波发射的起源:开创星际非晶尘埃量子特性理论
- 批准号:
22KJ0727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
- 批准号:
23K17905 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CDS&E: Excited-state properties and the impact of random defects in quantum materials
CDS
- 批准号:
2202101 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Low Dimensional Materials and their Topological and Collective Properties
量子低维材料及其拓扑和集体性质
- 批准号:
RGPIN-2021-04079 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral