Ultrahigh Sensitivity Parametric Sensing with Nanotube
纳米管超高灵敏度参数传感
基本信息
- 批准号:0501495
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-15 至 2007-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Owing to the limitation associated with lithography based processes, fabrication of nanoscale structure by micromachining has been very difficult, and usually involves introducing large amount of surface damages onto the nanostructure due to the etching and oxidation processes. The effect of such damages is more prominent in the nanoscale structure as the surface to volume ratio is inversely proportional to r, for example, for a rod having a radius of r. This becomes the limiting factor in using such fabricated nanostructures for ultrahigh frequency and ultrahigh quality factor resonator applications. Surface damages serve as scattering centers for energy dissipation, thus the damping, in mechanical resonance system. In addition, the fabrication of uniform, suspended beam structure having a diameter around tens of nanometer is still a challenging task even for most advanced lithography facilities. Novel nanostructures, such as BN and C nanotubes, have attracted great attention recently due to their excellent mechanical, electrical and structural properties, which promises their applications in sensing, materials reinforcement, vacuum microelectronics, and micro- or nano- electromechanical systems (MEMS/ NEMS). The extremely small physical dimensions of such nanostructures imply theoretically high sensitivity to external perturbation, which is thus advantageous for femto-gram mass measurement, and bio-molecule and gas sensing. We intend to integrate such nanostructures with MEMS and to explore unique resonance principles to achieve ultrahigh frequency and ultrahigh sensitivity sensing. The intellectual merits of the proposed research: The research objective of the proposed research is to study the resonance sensing behavior of unique nanomaterials and apply the discovery for the development of ultrahigh sensitivity sensor. The research implementation is based on the advanced research capability, the in situ free space nanomanipulation and characterization with electron microscopy, which allows the effective and flexible investigation and device-prototyping of multifunctional materials at the nanoscale; and the research fundamental is based on the principle of parametric resonance, which exhibits instability in its resonance behavior that will be utilized for amplifying extremely small perturbation. Overall, the research aims to realize and characterize the parametric resonance of individual nanotubes with nanomanipulation inside scanning electron microscope and transmission electron microscope; to prototype parametric resonance sensor integrated with excitation and sensing mechanisms, and to develop device with microfabrication of parametric resonance sensor incorporating nanotubes. The study will help to resolve the long standing experimental challenges, such as electronic sensing of electromechanical response at the nanoscale and device integration of nanomaterials for NEMS, facing the application of nanomaterials for high sensitivity resonance sensing. The broader impact of the proposed research: The proposed study assimilates the forefront results in the development of advanced research capabilities and the study of novel nanomaterials to realize unique NEMS devices by applying advanced physics, mechanics, electronics and micromachining technology. The study aims to advance the current state of the art in mechanical resonance research to achieve extremely high sensitivity sensing. The research will extend the application of electromechanical sensing to a new level and to a new dimension never explored before, and will ultimately lead to the development of nanoscale sensor useful for single molecule level mass sensing and single charge electromechanical sensing. The methods and technologies developed in this study are broadly translatable to many other studies involving sensing and characterization at the nanoscale. Strongly coupled with this innovative and multidisciplinary research program is an educational initiative that will naturally introduce undergraduate students into scientific research, proactively promote the participation of woman and minority students, and effectively engage and disseminate scientific knowledge to the general public.
由于与基于光刻的工艺相关的限制,通过微机械加工制造纳米级结构非常困难,并且通常涉及由于蚀刻和氧化工艺而在纳米结构上引入大量表面损伤。 这种损坏的影响在纳米级结构中更为突出,因为表面积与体积之比与 r 成反比,例如,对于半径为 r 的棒而言。 这成为将这种制造的纳米结构用于超高频和超高品质因数谐振器应用的限制因素。 表面损伤在机械共振系统中充当能量耗散的散射中心,从而起到阻尼作用。 此外,即使对于最先进的光刻设备来说,制造直径在数十纳米左右的均匀悬浮梁结构仍然是一项具有挑战性的任务。 BN和C纳米管等新型纳米结构近年来因其优异的机械、电学和结构性能而受到广泛关注,有望在传感、材料增强、真空微电子和微纳机电系统(MEMS/NEMS)等领域得到广泛应用。 这种纳米结构极小的物理尺寸意味着理论上对外部扰动具有高灵敏度,因此有利于飞克质量测量以及生物分子和气体传感。 我们打算将这种纳米结构与MEMS集成,并探索独特的共振原理,以实现超高频率和超高灵敏度传感。该研究的智力价值:该研究的研究目标是研究独特纳米材料的共振传感行为,并将这一发现应用于超高灵敏度传感器的开发。 研究实施基于先进的研究能力、原位自由空间纳米操纵和电子显微镜表征,可以在纳米尺度上对多功能材料进行有效、灵活的研究和器件原型设计; 研究基础是基于参数共振原理,其共振行为表现出不稳定性,可用于放大极小的扰动。 总体而言,该研究旨在通过扫描电子显微镜和透射电子显微镜内的纳米操纵来实现和表征单个纳米管的参数共振;集成了激励和传感机制的参数共振传感器原型,并开发了包含纳米管的参数共振传感器微加工装置。 该研究将有助于解决纳米材料在高灵敏度共振传感应用中长期存在的实验挑战,例如纳米尺度机电响应的电子传感和NEMS纳米材料的器件集成。拟议研究的更广泛影响:拟议研究吸收了先进研究能力发展和新型纳米材料研究的前沿成果,通过应用先进的物理、机械、电子和微加工技术来实现独特的NEMS设备。 该研究旨在推进机械共振研究的最新技术,以实现极高灵敏度的传感。 该研究将机电传感的应用扩展到以前从未探索过的新水平和新维度,并最终导致可用于单分子级质量传感和单电荷机电传感的纳米级传感器的开发。 本研究开发的方法和技术可广泛应用于涉及纳米尺度传感和表征的许多其他研究。 与这一创新的多学科研究计划紧密结合的是一项教育举措,它将自然地将本科生引入科学研究,积极促进女性和少数民族学生的参与,并向公众有效地接触和传播科学知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min-Feng Yu其他文献
Dynamics of microcantilever integrated with geometric nonlinearity for stable and broadband nonlinear atomic force microscopy
- DOI:
10.1016/j.susc.2012.05.009 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Hanna Cho;Min-Feng Yu;Alexander F. Vakakis;Lawrence A. Bergman;D. Michael McFarland - 通讯作者:
D. Michael McFarland
Nano-Mechanical and -Electromechanical Heterogeneity in Single Collagen Fibrils
- DOI:
10.1016/j.bpj.2009.12.4170 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Majid Minary-Jolandan;Min-Feng Yu - 通讯作者:
Min-Feng Yu
Fundamental Mechanical Properties of Carbon Nanotubes: Current Understanding and the Related Experimental Studies
- DOI:
10.1115/1.1755245 - 发表时间:
2004-07 - 期刊:
- 影响因子:1.2
- 作者:
Min-Feng Yu - 通讯作者:
Min-Feng Yu
Min-Feng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min-Feng Yu', 18)}}的其他基金
Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
- 批准号:
1516097 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
- 批准号:
1131695 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Intrinsically-Nonlinear Broadband Nanoresonator for Ultrahighly Sensitive Sensing of Energy Transfers
用于能量传输超高灵敏传感的本质非线性宽带纳米谐振器
- 批准号:
1000615 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Nanofluidics of Surface-Driven Liquid Flow and Its Application for Nanofabrication
表面驱动液体流动的纳米流体及其在纳米加工中的应用
- 批准号:
0731096 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Scale Effect in Nanoscale Mechanical Resonance System
纳米级机械共振系统中的尺度效应
- 批准号:
0726878 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
NER: Carbon Nanotube Absolute Displacement Encoder with Atomic Lattice Registry Sensitivity
NER:具有原子晶格记录灵敏度的碳纳米管绝对位移编码器
- 批准号:
0508416 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Piezo- and Ferro- Electricity of One Dimensional Nanomaterials
一维纳米材料的压电和铁电
- 批准号:
0324643 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Sensitivity analysis of the value function of parametric optimization problems
参数优化问题价值函数的敏感性分析
- 批准号:
509632-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Study of low-noise superconducting parametric amplifier aiming at sensitivity enhancement of terahertz receivers
旨在提高太赫兹接收器灵敏度的低噪声超导参量放大器研究
- 批准号:
26420305 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical studies of parametric sensitivity for biochemical reacting systems
生化反应系统参数灵敏度的数值研究
- 批准号:
433102-2012 - 财政年份:2012
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Understanding and constraining the parametric uncertainty of climate sensitivity
理解和限制气候敏感性的参数不确定性
- 批准号:
23310014 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Parametric coding of acoustic fields using models of auditory sensitivity
使用听觉灵敏度模型对声场进行参数编码
- 批准号:
DP0987721 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Projects
STTR Phase I: Optical Parametric Amplification of Backscatter Signal LIDAR for Enhanced Detection Sensitivity
STTR 第一阶段:反向散射信号 LIDAR 的光学参数放大,以增强检测灵敏度
- 批准号:
0611243 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
- 批准号:
7964089 - 财政年份:
- 资助金额:
-- - 项目类别:
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
- 批准号:
7732351 - 财政年份:
- 资助金额:
-- - 项目类别:
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
- 批准号:
8335963 - 财政年份:
- 资助金额:
-- - 项目类别:
Improving Sensitivity and Specificity of Parametric MRI Assessment of Cartilage
提高软骨参数 MRI 评估的灵敏度和特异性
- 批准号:
8552506 - 财政年份:
- 资助金额:
-- - 项目类别:














{{item.name}}会员




