Scale Effect in Nanoscale Mechanical Resonance System
纳米级机械共振系统中的尺度效应
基本信息
- 批准号:0726878
- 负责人:
- 金额:$ 25.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims for the thorough investigation of the scale effect and the associated energy dissipation in nanoscale mechanical resonator operated in air. An integrated research program is proposed which combines unique experimental approaches with advanced research tools and appropriate theoretical analyses. Nanoscale beam resonators integrating individual nanostructures will be developed. An all-electronics approach will be realized for the driving and sensing of the resonance. The experimental study will be further corroborated with theoretical analysis in order to gradually develop a comprehensive and solid understanding of scale effect and energy dissipation in such a nanosystem. The study of nanoscale mechanical resonator systems has previously mostly limited to vacuum environment or cryogenic temperature. The proposed study, besides providing fundamental knowledge on an interesting scientific subject, namely the scale effect in mechanical resonance system at the nanoscale, can ultimately lead to the development of novel nanoscale devices for high sensitivity mass and biomolecular sensing in ambient environment. A multifaceted educational program coupled with the proposed research provides also a perfect learning and training opportunity for the active participation and effective education of students and the public, which facilitates the wide dissemination and transfer of scientific knowledge and ultimately benefits the society.
该项目旨在彻底研究空气中运行的纳米级机械谐振器的尺度效应和相关能量耗散。 提出了一个综合研究计划,将独特的实验方法与先进的研究工具和适当的理论分析相结合。 将开发集成单个纳米结构的纳米级光束谐振器。 将实现全电子方法来驱动和传感谐振。 实验研究将进一步与理论分析相证实,以逐步对这种纳米系统中的尺度效应和能量耗散产生全面而扎实的理解。 纳米级机械谐振器系统的研究以前大多局限于真空环境或低温。 所提出的研究除了提供一个有趣的科学主题(即纳米尺度机械共振系统的尺度效应)的基础知识外,最终还可导致开发用于环境环境中高灵敏度质量和生物分子传感的新型纳米尺度设备。 多方面的教育计划与拟议的研究相结合,还为学生和公众的积极参与和有效教育提供了完美的学习和培训机会,从而促进科学知识的广泛传播和转移,最终造福社会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min-Feng Yu其他文献
Dynamics of microcantilever integrated with geometric nonlinearity for stable and broadband nonlinear atomic force microscopy
- DOI:
10.1016/j.susc.2012.05.009 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Hanna Cho;Min-Feng Yu;Alexander F. Vakakis;Lawrence A. Bergman;D. Michael McFarland - 通讯作者:
D. Michael McFarland
Nano-Mechanical and -Electromechanical Heterogeneity in Single Collagen Fibrils
- DOI:
10.1016/j.bpj.2009.12.4170 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Majid Minary-Jolandan;Min-Feng Yu - 通讯作者:
Min-Feng Yu
Fundamental Mechanical Properties of Carbon Nanotubes: Current Understanding and the Related Experimental Studies
- DOI:
10.1115/1.1755245 - 发表时间:
2004-07 - 期刊:
- 影响因子:1.2
- 作者:
Min-Feng Yu - 通讯作者:
Min-Feng Yu
Min-Feng Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min-Feng Yu', 18)}}的其他基金
Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
- 批准号:
1516097 - 财政年份:2014
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
- 批准号:
1131695 - 财政年份:2011
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Intrinsically-Nonlinear Broadband Nanoresonator for Ultrahighly Sensitive Sensing of Energy Transfers
用于能量传输超高灵敏传感的本质非线性宽带纳米谐振器
- 批准号:
1000615 - 财政年份:2010
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Nanofluidics of Surface-Driven Liquid Flow and Its Application for Nanofabrication
表面驱动液体流动的纳米流体及其在纳米加工中的应用
- 批准号:
0731096 - 财政年份:2007
- 资助金额:
$ 25.92万 - 项目类别:
Continuing Grant
Ultrahigh Sensitivity Parametric Sensing with Nanotube
纳米管超高灵敏度参数传感
- 批准号:
0501495 - 财政年份:2005
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
NER: Carbon Nanotube Absolute Displacement Encoder with Atomic Lattice Registry Sensitivity
NER:具有原子晶格记录灵敏度的碳纳米管绝对位移编码器
- 批准号:
0508416 - 财政年份:2005
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Piezo- and Ferro- Electricity of One Dimensional Nanomaterials
一维纳米材料的压电和铁电
- 批准号:
0324643 - 财政年份:2003
- 资助金额:
$ 25.92万 - 项目类别:
Continuing Grant
相似国自然基金
LINC00673调控HIF-1α促进Warburg effect在子宫内膜蜕膜化中的作用和机制研究
- 批准号:
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
(宫颈)癌前病变的Warburg-like effect与糖代谢重编程机制研究
- 批准号:31670788
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Developing Machine Learning Potential to Unravel Quantum Effect on Ionic Hydration and Transport in Nanoscale Confinement
开发机器学习潜力来揭示纳米尺度限制中离子水合和传输的量子效应
- 批准号:
2154996 - 财政年份:2022
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Imaging the effect of nanoscale static and dynamic disorder on topological spin currents
成像纳米级静态和动态无序对拓扑自旋电流的影响
- 批准号:
2749479 - 财政年份:2022
- 资助金额:
$ 25.92万 - 项目类别:
Studentship
EAGER: Nanoscale Elastocaloric Effect in Phase-Change Nanowires for Solid-State Cooling
EAGER:用于固态冷却的相变纳米线的纳米级弹热效应
- 批准号:
2039269 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Effect of Nanoscale Active Zone Morphology on Synaptic Vesicle Release Probability
纳米级活性区形态对突触小泡释放概率的影响
- 批准号:
10251901 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937949 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Visualizing nanoscale water and the condensation dynamics by Brewster angle effect
通过布鲁斯特角效应可视化纳米级水和凝结动力学
- 批准号:
20K15167 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937923 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant
Effect of Nanoscale Active Zone Morphology on Synaptic Vesicle Release Probability
纳米级活性区形态对突触小泡释放概率的影响
- 批准号:
10475099 - 财政年份:2020
- 资助金额:
$ 25.92万 - 项目类别:
Investigating the effect of nanoscale vibration cues on material surfaces for preventing bacterial adhesion
研究纳米级振动信号对材料表面防止细菌粘附的影响
- 批准号:
2266964 - 财政年份:2019
- 资助金额:
$ 25.92万 - 项目类别:
Studentship
Understanding and Leveraging the Effect of Nanoscale Roughness on Macroscale Adhesion
了解和利用纳米级粗糙度对宏观粘附力的影响
- 批准号:
1727378 - 财政年份:2017
- 资助金额:
$ 25.92万 - 项目类别:
Standard Grant














{{item.name}}会员




