Nanofluidics of Surface-Driven Liquid Flow and Its Application for Nanofabrication

表面驱动液体流动的纳米流体及其在纳米加工中的应用

基本信息

  • 批准号:
    0731096
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

PROPOSAL NO.: CBET-0731096 PRINCIPAL INVESTIGATOR: YU, MIN-FENG INSTITUTION: UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGNNANOFLUIDICS OF SURFACE-DRIVEN LIQUID FLOW AND ITS APPLICATION FOR NANOFABRICATIONLiquid transport at the nanoscale has been one of the major topics in both experimental and theoretical studies, due to its relevance to the fundamental understanding of fluid dynamics at the nanoscale, and to the potential applications in nanofluidics devices for high sensitivity chemical sensing and biomedical studies. By taking a unique approach of utilizing high quality one-dimensional nanostructure, such as nanotube and nanowire, as the active nanoscale conveyor for liquid, this planned research is aimed to study the fundamental issues related to liquid transport at the nanoscale, and to apply the nanoscale liquid flow for nanofabrication. The intellectual merits of the research focus on the study of surface driven flow and electrokinetic flow of liquid at the nanoscale and the development of a novel nanofabrication tool: a nanowire-based electrochemical nanofabrication system. The research will concurrently exploit the novel structural properties of nanotubes and nanowires to study nanofluidics and integrate such nanotubes and nanowires for engineering new systems. The successful execution of the research is solidly supported by the PI's demonstrated research capabilities and the planned practical approaches. A nanowire-based liquid delivery system will be configured for the in-situ study of the surface tension-driven flow and the electrokinetic flow confined on the external surface of nanotube or nanowire. Such external surface-confined flow is molecularly thin, and in the case of electrokinetic flow, well within the strong interaction range of electric double layer expected to form at the nanotube/electrolyte interface. The in-situ method maximizes the effectiveness of evaluating various parameters related to the complex behavior of nanoscale external flow, such as electric potential, channel size, ion concentration, liquid property, surface property and ion type. It also facilitates the efficient optimization of parameters important for the nanowire-based electrochemical nanofabrication system. The broader impact of the planned research integrates basic research with engineering development. It introduces new methodologies for nanofluidics study to solve challenging scientific problems. The planned study has the potential to result in major advancement in the fundamental understanding of liquid flow, especially the surface tension-driven flow and the electrokinetic flow, at the nanoscale, as well as the state of the art of nanofabrication technology. The new tool, namely a nanowire-based electrochemical nanofabrication system, offers the capabilities of locally fabricating and patterning nanostructure, nanoscale interconnects or complex-structured components in ambient environment, and will find critical use in nanomanufacturing, high density electronics packaging, circuit repair and nanoprobe development applications. The planned research combines the applications of nanomaterials, materials engineering, instrumentation, electrochemistry and nanofabrication, and provides a multifaceted learning platform for the active participation and effective education of students.
建议没有。电话:0731096首席研究员:于敏峰表面驱动液体流动的纳米流体学及其在纳米制造中的应用纳米尺度的液体传输一直是实验和理论研究的主要课题之一,因为它与纳米尺度流体动力学的基本理解有关,并且与纳米流体器件在高灵敏度化学传感和生物医学研究中的潜在应用有关。本计划采用独特的方法,利用高质量的一维纳米结构,如纳米管和纳米线,作为主动的纳米尺度液体输送,旨在研究纳米尺度液体输送的相关基本问题,并将纳米尺度液体流动应用于纳米制造。本研究的智力优势集中在研究纳米尺度下的表面驱动流动和电动液体流动,以及开发一种新型纳米加工工具:基于纳米线的电化学纳米加工系统。该研究将同时利用纳米管和纳米线的新结构特性来研究纳米流体,并将这些纳米管和纳米线集成到工程新系统中。该研究的成功执行是由PI展示的研究能力和计划的实际方法的坚实支持。设计了一种基于纳米线的液体输送系统,对纳米管或纳米线表面的表面张力驱动流动和电动流动进行了现场研究。这种受外表面限制的流动是分子薄的,并且在电动流动的情况下,完全在纳米管/电解质界面形成的双电层的强相互作用范围内。原位方法最大限度地提高了评估与纳米级外部流动复杂行为相关的各种参数的有效性,如电势、通道大小、离子浓度、液体性质、表面性质和离子类型。它还有助于有效地优化基于纳米线的电化学纳米加工系统的重要参数。计划研究的更广泛影响将基础研究与工程开发结合起来。它介绍了纳米流体研究的新方法,以解决具有挑战性的科学问题。计划中的研究有可能在纳米尺度上对液体流动的基本理解,特别是表面张力驱动的流动和电动流动,以及纳米制造技术的现状方面取得重大进展。新工具,即基于纳米线的电化学纳米制造系统,提供了在环境环境中局部制造和图像化纳米结构、纳米级互连或复杂结构组件的能力,并将在纳米制造、高密度电子封装、电路修复和纳米探针开发应用中找到关键用途。计划研究将纳米材料、材料工程、仪器仪表、电化学和纳米制造等应用相结合,为学生的积极参与和有效教育提供一个多方面的学习平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min-Feng Yu其他文献

Dynamics of microcantilever integrated with geometric nonlinearity for stable and broadband nonlinear atomic force microscopy
  • DOI:
    10.1016/j.susc.2012.05.009
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hanna Cho;Min-Feng Yu;Alexander F. Vakakis;Lawrence A. Bergman;D. Michael McFarland
  • 通讯作者:
    D. Michael McFarland
Nano-Mechanical and -Electromechanical Heterogeneity in Single Collagen Fibrils
  • DOI:
    10.1016/j.bpj.2009.12.4170
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Majid Minary-Jolandan;Min-Feng Yu
  • 通讯作者:
    Min-Feng Yu

Min-Feng Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min-Feng Yu', 18)}}的其他基金

Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
  • 批准号:
    1516097
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Direct-Write Nanomanufacturing of High Density and High Aspect Ratio Metal Electrode Arrays
高密度和高深宽比金属电极阵列的直写纳米制造
  • 批准号:
    1131695
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Intrinsically-Nonlinear Broadband Nanoresonator for Ultrahighly Sensitive Sensing of Energy Transfers
用于能量传输超高灵敏传感的本质非线性宽带纳米谐振器
  • 批准号:
    1000615
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Scale Effect in Nanoscale Mechanical Resonance System
纳米级机械共振系统中的尺度效应
  • 批准号:
    0726878
  • 财政年份:
    2007
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Ultrahigh Sensitivity Parametric Sensing with Nanotube
纳米管超高灵敏度参数传感
  • 批准号:
    0501495
  • 财政年份:
    2005
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
NER: Carbon Nanotube Absolute Displacement Encoder with Atomic Lattice Registry Sensitivity
NER:具有原子晶格记录灵敏度的碳纳米管绝对位移编码器
  • 批准号:
    0508416
  • 财政年份:
    2005
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Piezo- and Ferro- Electricity of One Dimensional Nanomaterials
一维纳米材料的压电和铁电
  • 批准号:
    0324643
  • 财政年份:
    2003
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似国自然基金

“surface-17”量子纠错码在超导量子电路中的实现
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
  • 批准号:
    41974039
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于surface hopping方法探索有机半导体中激子解体机制
  • 批准号:
    LY19A040007
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
  • 批准号:
    11574379
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
  • 批准号:
    11426209
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Nano/Micro-surface pattern的摩擦特性研究
  • 批准号:
    50765008
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica
EAGER:成土碳酸盐记录了南极洲日照驱动的表面融化
  • 批准号:
    2423761
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
  • 批准号:
    2336002
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Development of Innovative Entropy-Driven Segregation Method for Surface Modification of Polymeric Materials
开发用于聚合物材料表面改性的创新熵驱动偏析方法
  • 批准号:
    23K17944
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: The Heated Wind- and Wave-Driven Ocean Surface Boundary Layer: Synergistic Analyses of Observations and Simulations
合作研究:受热的风和波浪驱动的海洋表面边界层:观测和模拟的协同分析
  • 批准号:
    2316818
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
NSF-DFG: Advances in Ion-Surface Interaction-Driven Manufacturing of One-Dimensional Metal Oxide Heterostructures
NSF-DFG:离子表面相互作用驱动的一维金属氧化物异质结构制造的进展
  • 批准号:
    2211858
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Physics-informed data-driven models to characterise the effect of surface defects on flow boiling phenomena
基于物理的数据驱动模型,用于表征表面缺陷对流动沸腾现象的影响
  • 批准号:
    2747077
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Transportation mechanism of polar and short-lived active species at charged water surface: possibility that polar molecules are driven by coulomb force at gas-liquid interface
带电水面极性和短寿命活性物质的传输机制:极性分子在气液界面受库仑力驱动的可能性
  • 批准号:
    22K14244
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Resistive switching at sub-nano gaps driven by piled sub-nano clusters with chemical surface modification
由具有化学表面改性的堆积亚纳米簇驱动的亚纳米间隙的电阻切换
  • 批准号:
    22K04859
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: The Heated Wind- and Wave-Driven Ocean Surface Boundary Layer: Synergistic Analyses of Observations and Simulations
合作研究:受热的风和波浪驱动的海洋表面边界层:观测和模拟的协同分析
  • 批准号:
    2219825
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了