NSF-Europe Materials Collaboration: Rapid Generation of Inherently Conductive Polymer Micro and Nanostructures
NSF-欧洲材料合作:快速生成固有导电聚合物微米和纳米结构
基本信息
- 批准号:0502928
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: Here we propose to use our solid-state oxidative crosslinking process to rapidly micro pattern inherently conductive polymer lines and to prepare inherently conductive polymer nanostructures. Since our solid-state oxidative process involves the use of a processible precursor polymer, we can fabricate polymeric structures from the macro to the nanoscale. Furthermore, the polymerization process we utilize, namely ring-opening methathesis polymerization (ROMP) is living with the capability of the facile preparation of random copolymers. Therefore, we can vary the amount of conductive polymer ultimately ending up in our solid-state crosslinked inherently conductive polymers allowing for us to attain a given optical density and conductivity. We have already found that electrochromic devices prepared from our nanostructured polymers have tremendous potential for achieving submillisecond response speeds. With the ability to prepare macro, micro, and nano lines of inherently conductive polymer, we will be able to study solid-state oxidative crosslinking kinetics (crosslinking propagation rates), and ion diffusion upon redox switching of the polymers across all size scales. Through ion diffusion studies with our Spanish collaborator, Professor Toribio Otero, Director of the Center for Electrochemistry and Smart Materials (CEMI) at the Polytechnic University of Cartagena, we will understand the switching capabilities of our crosslinked inherently conductive polymers and learn strategies to optimize the switching speeds and to test their potential in application areas that Otero is an expert in, namely membranes and artificial muscles (actuators). Broader Impacts: Due to the high processibility of our precursor polymers, we have the ability to fabricate inherently conductive polymers via our novel process of solid-state oxidative crosslinking into a variety of macro, micro, and nanostructures potentially by numerous techniques. This work could ultimately lead to a procedure by which to mass produce flexible displays, wearable displays, nanodevices, polarizing electrochromic lenses and windows, fast switching electrochromics for laser eye protection, and potentially ion selective membranes and actuators. With the ability to precisely load a given amount of conductive polymer within an insulating polymer through our solid-state crosslinking process, we could potentially have a way to put the material at the percolation threshold in order to generate micron and nanosized on/off switches. Collaborative efforts with a world expert, namely Professor Toribio Otero, on ion diffusion studies of these conductive polymers could allow for us to design and further optimize the next generation of inherently conductive polymer devices with extraordinarily rapid response times for charge/discharge cycles. In addition to laser protection electrochromic goggles and polarizing filters, this work could lead to a new generation of polymeric capacitors and batteries. Collaboration: Interchange of students with our Spanish collaborators is proposed. Two students from the Sotzing group will spend 3 months/yr in Spain learning about the study of ion diffusion and simulations while also involved in their research. Two students from Spain will spend 3 months/yr in the U.S. studying nano and micro fabrication of inherently conductive polymers and the study of crosslinking kinetics while also carrying out their expertise of research. Within the collaboration, all of the researchers involved in the collaboration will be involved in a two week intensive collaborative effort in Spain for the first year and a two week concerted effort in the U.S.A. for the second year. During these two weeks, we will hold biweekly presentations and intensive training on instrumentation in the respective laboratories, and short courses in both Professor.s areas of expertise. Diversity: This collaboration between the U.S. and Spain will provide an excellent opportunity for Mexican-American and Puerto Rican-American underrepresented minorities, considering these type students would be fluent in both languages of this collaboration.
智力优势:在这里,我们建议使用我们的固态氧化交联工艺来快速微图案固有导电聚合物线,并制备固有导电聚合物纳米结构。由于我们的固态氧化过程涉及到使用可加工的前体聚合物,我们可以制造从宏观到纳米尺度的聚合物结构。此外,我们使用的聚合工艺,即开环甲基聚合(ROMP),具有易于制备无规共聚物的能力。因此,我们可以改变导电聚合物的数量,最终形成固态交联固有导电聚合物,使我们能够获得给定的光密度和导电性。我们已经发现,由我们的纳米结构聚合物制备的电致变色器件具有实现亚毫秒响应速度的巨大潜力。由于能够制备宏观、微观和纳米线的固有导电聚合物,我们将能够研究固态氧化交联动力学(交联传播速率),以及聚合物在所有尺寸尺度上的氧化还原开关时的离子扩散。通过与我们的西班牙合作者,卡塔赫纳理工大学电化学和智能材料中心(CEMI)主任Toribio Otero教授的离子扩散研究,我们将了解我们交联固有导电聚合物的开关能力,并学习优化开关速度的策略,并测试它们在Otero擅长的应用领域的潜力,即膜和人造肌肉(致动器)。更广泛的影响:由于我们的前驱体聚合物的高可加工性,我们有能力通过我们的固态氧化交联新工艺制造出固有导电聚合物,并有可能通过多种技术将其制成各种宏观、微观和纳米结构。这项工作最终可能导致大规模生产柔性显示器、可穿戴显示器、纳米器件、偏振电致变色透镜和窗口、用于激光护眼的快速开关电致变色器件,以及潜在的离子选择膜和致动器。通过我们的固态交联工艺,我们能够精确地将给定数量的导电聚合物装入绝缘聚合物中,我们可能有办法将材料置于渗透阈值,从而产生微米级和纳米级的开/关开关。与世界专家,即Toribio Otero教授合作,对这些导电聚合物的离子扩散进行研究,可以使我们设计并进一步优化下一代固有导电聚合物器件,其充电/放电周期的响应时间非常快。除了激光防护电致变色护目镜和偏光滤光片,这项工作还可能导致新一代聚合物电容器和电池的出现。合作:建议与西班牙合作者交换学生。来自Sotzing小组的两名学生将每年在西班牙学习3个月,学习离子扩散和模拟的研究,同时也参与他们的研究。来自西班牙的两名学生将在美国每年花3个月的时间学习固有导电聚合物的纳米和微制造以及交联动力学的研究,同时也进行他们的专业研究。在合作中,参与合作的所有研究人员第一年将在西班牙进行为期两周的密集合作,第二年将在美国进行为期两周的协同工作。在这两周内,我们将每两周在各自的实验室举行一次关于仪器的报告和强化培训,并在两位教授的短期课程中进行。S专业领域。多样性:美国和西班牙之间的合作将为墨西哥裔美国人和波多黎各裔美国人提供一个极好的机会,考虑到这些类型的学生将流利地使用合作的两种语言。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Sotzing其他文献
Rationally designed high-temperature polymer dielectrics for capacitive energy storage: An experimental and computational alliance
用于电容储能的合理设计的高温聚合物电介质:实验与计算联盟
- DOI:
10.1016/j.progpolymsci.2025.101931 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:26.100
- 作者:
Pritish S Aklujkar;Rishi Gurnani;Pragati Rout;Ashish R Khomane;Irene Mutegi;Mohak Desai;Amy Pollock;John M Toribio;Jing Hao;Yang Cao;Rampi Ramprasad;Gregory Sotzing - 通讯作者:
Gregory Sotzing
Gregory Sotzing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Sotzing', 18)}}的其他基金
CAREER: Novel Conjugated Macromolecules from Fused Heterocyclics and from Oxidative Solid-state Crosslinking
职业:来自稠合杂环和氧化固态交联的新型共轭大分子
- 批准号:
0349121 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
NSF-Europe: Evaluation of the Optical and Electrical Properties of Oxychalcogenide Glass Materials
NSF-Europe:硫属化物玻璃材料的光学和电学性能评估
- 批准号:
0610813 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Atomic Structure of Nanosize Crystalline Grains in Diamond-SiC Composites
NSF-欧洲材料合作:金刚石-SiC 复合材料中纳米晶粒的原子结构
- 批准号:
0502136 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Synthesis, Characterization and Physical Properties of IR Glass-Ceramics with New Functionalities
NSF-欧洲材料合作:具有新功能的红外玻璃陶瓷的合成、表征和物理性能
- 批准号:
0502577 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Rational Design and Quantum Chemistry of Complex Itinerant Intermetallic Magnets
NSF-欧洲材料合作:复杂流动金属间磁体的合理设计和量子化学
- 批准号:
0502671 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Strength and Formability of Fine Grain Size Al-Mg Alloys
NSF-欧洲材料合作:细晶粒铝镁合金的强度和成形性
- 批准号:
0502891 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-Europe Materials Collaboration: Periodic Arrays of Long Semiconductor and Metal Nanowires Embedded in a Silica Fiber for Optoelectronics
NSF-欧洲材料合作:嵌入石英光纤中的长半导体和金属纳米线周期性阵列,用于光电子学
- 批准号:
0502906 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: New Functionalized Hybrid Systems for Drug Delivery
NSF-欧洲材料合作:用于药物输送的新型功能化混合系统
- 批准号:
0503006 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Self-Organized Nanostructured Thin Films for Catalysis in Perovskite Related Membrane Reactors
NSF-欧洲材料合作:用于钙钛矿相关膜反应器催化的自组织纳米结构薄膜
- 批准号:
0502765 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Micromechanics of Magnetic Shape-Memory Alloys
NSF-欧洲材料合作:磁性形状记忆合金的微观力学
- 批准号:
0502551 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: Synthesis, Characterization and Molecular Modeling of Stimulus-Responsive Polymer Brushes on Surfaces
NSF-欧洲材料合作:表面刺激响应聚合物刷的合成、表征和分子建模
- 批准号:
0502953 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant