String-related structures in homotopy theory

同伦理论中的弦相关结构

基本信息

  • 批准号:
    0503814
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The overall theme of the investigator's research is the application ofhomotopy theory to other areas of mathematics and to physics, inparticular to the understanding of strings and similar structures. Amongthese structures, most directly related to of string theory is conformalfield theory, which also appears to be closely connected to ellipticcohomology. This in turn has implications in the area of automorphicforms, and relations with Borcherds' Moonshine module. There is also aremarkable connection with the absolute Galois group of Q, throughGrothendieck's program of dessins d'enfants, and the action ofGrothendieck-Teichmueller structures on the formalism that make upconformal field theories. By way of analogy, studying the space of loopsin a topological space leads to the string topology, which is closelyrelated to operads and deformation theory in more abstract contexts. Toapproach these questions, the investigator uses categorical Koszulduality. Related to Koszul duality is the notion of Grothendieck/Verdierduality in various contexts, which led back to A^1- and equivariant stablehomotopy theory, including Real-oriented homotopy theory. This is directlyanalogous to the A^1-homotopy theory constructed by Morel and Voevodsky.-------------------------------------The overall theme of the investigator's research is the interactionbetween the area of algebraic topology in mathematics, and string theoryin physics. String theory emerged in physics in the 70's and 80's as atheory providing new hope toward gaining a unified theory of all theforces of nature; its basic idea was that the fundamental units of theuniverse are not point-like particles, but tiny one-dimensional strings,which may form a closed loop, or may be open (with two endpoints). Thetheory since underwent a tumultuous development in which many additionalstructures emerged. Today it is still believed in physics that theunification program may be facilitated by some theory closely related tostructures discovered by string theory. Despite the long history, manyfundamental aspects of string theory are not well mathematicallyunderstood, which, it seems, has somewhat hindered the physical theory.The investigator studies some of these issues both directly, and by way ofanalogy and connection with similar structures elsewhere in mathematics.Topology can be thought of as geometry in its purely qualitative aspects.In particular, algebraic topology has built up many powerful methods forstudying topological spaces, by associating to them certainalgebraic/numerical invariants. In physics, spacetime itself can beconsidered as a topological space. However, to understand strings inspacetime, one needs to study not only the points in topological spaces,but loops in such spaces, which can be thought of as models for strings.The investigator studies the structures arising from the space of loops intopological spaces. This includes conformal field theory and stringtopology, as well as certain structures from the area of algebra, such asoperads and Hochschild cohomology. The investigator also considers thestructures arising from loops in certain purely abstract, general context,for instance that of categorical Koszul duality.
研究者研究的总体主题是荷兰理论在数学和物理学的其他领域的应用,涉及对字符串和类似结构的理解。在这些结构中,与弦理论的最直接相关是共形菲尔德理论,它似乎与椭圆仪学密切相关。 反过来,这对自动形式的领域具有影响,以及与Borcherds的月光模块的关系。 与Q的绝对Galois组,Deshendieck的Dessins d'Enfants计划以及Grothendieck-teichmueller结构的作用在形式主义上的作用中,也有可见的联系。通过类比,研究循环素的拓扑空间会导致弦拓扑,在更抽象的环境中,该拓扑与策略相关。为了解决这些问题,研究人员使用了分类的koszulduality。 与Koszul二元性相关的是在各种情况下Grothendieck/VerdierDuality的概念,这导致了A^1-和ecorivariant稳定型理论,包括现实的同义理论。 This is directlyanalogous to the A^1-homotopy theory constructed by Morel and Voevodsky.-------------------------------------The overall theme of the investigator's research is the interactionbetween the area of​​ algebraic topology in mathematics, and string theoryin physics.弦理论在70年代和80年代的物理学中出现,作为一种理论,为获得所有自然的统一理论提供了新的希望。它的基本思想是,Universe的基本单元不是点状的粒子,而是一个微小的一维字符串,它可能形成一个闭环或可以打开(带有两个端点)。自从经历了动荡的发展以来,出现了许多添加组件。如今,仍然相信物理学,即通过弦理论发现的一些与某些与之紧密相关的结构相关的理论可以促进统一计划。 Despite the long history, manyfundamental aspects of string theory are not well mathematicallyunderstood, which, it seems, has somewhat hindered the physical theory.The investigator studies some of these issues both directly, and by way ofanalogy and connection with similar structures elsewhere in mathematics.Topology can be thought of as geometry in its purely qualitative aspects.In particular, algebraic topology has built up many powerful methods forstudying topological空间,通过与他们联系确定性/数值不变。在物理学中,时空本身可以被视为拓扑空间。 但是,要了解弦具有更久的字符串,人们不仅需要研究拓扑空间中的点,而且还需要研究这些空间中的循环,这些空间可以将其视为字符串模型。这包括共形场理论和弦乐学,以及代数区域的某些结构,例如Asoperads和Hochschild共同体。研究者还考虑了在某些纯粹抽象的一般环境中循环引起的造成的,例如分类koszul二元性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Po Hu其他文献

The mechanism of EAP-EU combined impact on summer rainfall over North Asia
EAP-EU联合影响北亚夏季降水的机制
  • DOI:
    10.1007/s00704-020-03295-0
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Po Hu;Jianbo Cheng;Guolin Feng;Muhammad Mubashar Ahmad Dogar;Zhiqiang Gong
  • 通讯作者:
    Zhiqiang Gong
Qu Feng Xuan Bi Formula Alleviates Airway Inflammation and Guides Clinical Treatment by Improving Bronchial Immune Balance in the Asthma Model
祛风旋痹方通过改善哮喘模型支气管免疫平衡减轻气道炎症并指导临床治疗
  • DOI:
    10.1155/2021/6648834
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Po Hu;Suofang Shi;Li Liu;Shuomiao Yin;Lingfu Wang
  • 通讯作者:
    Lingfu Wang
Generating breakpoint-based timeline overview for news topic retrospection
A novel evaluation method of degree of order for passengers on trains
一种新的列车乘客秩序度评价方法

Po Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Po Hu', 18)}}的其他基金

Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
  • 批准号:
    2301520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equivariant motivic homotopy theory
等变动机同伦理论
  • 批准号:
    1104348
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
  • 批准号:
    0303505
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
  • 批准号:
    0204080
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9804394
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似国自然基金

有关代数结构的拓扑问题
  • 批准号:
    12101349
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
有关代数结构的拓扑问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构方程模型下基于样条和降维的结构方程半参数拟合及其有关的统计推断
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
有关强作用物质性质和结构的研究
  • 批准号:
    11535005
  • 批准年份:
    2015
  • 资助金额:
    280.0 万元
  • 项目类别:
    重点项目
有关硒基硫系玻璃中程有序结构若干问题的基础研究
  • 批准号:
    51572081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
  • 批准号:
    23K03033
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genomic Instability as A Driver of Stem Cell Exhaustion
基因组不稳定性是干细胞衰竭的驱动因素
  • 批准号:
    10722284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Admin Supplement: Role of Shh/Brachyury axis in the maintenance of the postnatal intervertebral disc
管理补充:Shh/Brachyury 轴在产后椎间盘维护中的作用
  • 批准号:
    10879520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Determining the neural mechanisms of mechanosensory food perception in DR-mediated longevity
确定 DR 介导的长寿中机械感觉食物感知的神经机制
  • 批准号:
    10749150
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of limbic structures, memory and emotion in chronic neuropathic pain
边缘系统、记忆和情绪在慢性神经病理性疼痛中的作用
  • 批准号:
    493861
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了