Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
基本信息
- 批准号:0303505
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-10-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204080Po HuIn this project, the investigator intends to consider a circle of ideas in algebraic topology and its interactions with other areas of mathematics. One point of entry to these ideas is Real-oriented homotopy theory, which uses the complex conjugation action on the complex cobordism spectrum to approach homotopy groups of spheres. The method used here is a case of descent, which appears also in Voevodsky's homotopy theory of algebraic varieties. In this direction, the investigator is interested in algebraic cobordism, the algebro-geometric analogue of complex cobordism. Another closely related idea is that of Verdier and Grothendieck dualities, both in algebraic geometry and in equivariant homotopy theory. Yet another related but different kind of duality is Koszul duality. Using this duality, the investigator, jointly with collaborators, proved a version of Kontsevich's conjecture on Hochschild cohomology of k-algebras. This in turn is related to the question of deformation quantazation in mathematcial physics. Another area into which Koszul duality enters is the string topology of Chas and Sullivan, which gives another connection between algebra and homotopy theory. The investigator is also involved with another project related to physics, namely constructing geometric models of elliptic cohomology.Topology is the study of spaces that can be deformedcontinuously. In part, this proposal seeks to better understand maps between such objects by ``stable'' methods, i. e. considering a sequence of objects of all higher dimensions at once, and by using certain summetries upon them. Similar methods can also be used to study more rigid geometric objects, for example in algebraic geometry the solution sets of systems of algebraic equations. This leads in turn to the study of algebraic structures on an abstract level.Finally, the related idea of string topology considers not just a space itself, but structures on the space consisting of loops in it. In particular, this is important to string theory in physics, which sees the universe as composed not of point-like particles but of loop-like ``strings''.
在这个项目中,研究者打算考虑代数拓扑中的一圈思想及其与其他数学领域的相互作用。这些思想的切入点之一是实数取向同伦理论,它利用复配谱上的复共轭作用来逼近球的同伦群。这里使用的方法是一个下降的例子,它也出现在Voevodsky的代数变异同伦理论中。在这个方向上,研究者感兴趣的是代数共体,复共体的代数-几何模拟。另一个密切相关的思想是在代数几何和等变同伦理论中的Verdier和Grothendieck对偶。另一种相关但不同的对偶是科祖尔对偶。利用这种对偶性,研究者和合作者证明了Kontsevich关于k-代数的Hochschild上同调猜想的一个版本。这又与数学物理中的变形量子化问题有关。Koszul对偶进入的另一个领域是Chas和Sullivan的弦拓扑,它给出了代数和同伦理论之间的另一个联系。研究者还参与了另一个与物理相关的项目,即建立椭圆上同调的几何模型。拓扑学研究的是可以连续变形的空间。在某种程度上,这个提议试图通过“稳定”的方法来更好地理解这些对象之间的映射,即同时考虑所有更高维度的对象序列,并通过对它们使用某些求和。类似的方法也可用于研究更刚性的几何对象,例如在代数几何中研究代数方程组的解集。这反过来又导致了在抽象层次上对代数结构的研究。最后,弦拓扑的相关思想不仅考虑空间本身,而且考虑空间上由环路组成的结构。特别是,这对物理学中的弦理论很重要,弦理论认为宇宙不是由点状粒子组成的,而是由环状的“弦”组成的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po Hu其他文献
The mechanism of EAP-EU combined impact on summer rainfall over North Asia
EAP-EU联合影响北亚夏季降水的机制
- DOI:
10.1007/s00704-020-03295-0 - 发表时间:
2020-06 - 期刊:
- 影响因子:3.4
- 作者:
Po Hu;Jianbo Cheng;Guolin Feng;Muhammad Mubashar Ahmad Dogar;Zhiqiang Gong - 通讯作者:
Zhiqiang Gong
LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK–eIF2α–ATF4–CHOP axis
LW-213 通过激活 PERK–eIF2α–ATF4–CHOP 轴诱导人皮肤 T 细胞淋巴瘤细胞凋亡
- DOI:
10.1038/s41401-020-0466-7 - 发表时间:
2020-08-03 - 期刊:
- 影响因子:8.400
- 作者:
Xiao-xuan Yu;Meng-yuan Zhu;Jia-rong Wang;Hui Li;Po Hu;Ying-jie Qing;Xiang-yuan Wang;Hong-zheng Wang;Zhan-yu Wang;Jing-yan Xu;Qing-long Guo;Hui Hui - 通讯作者:
Hui Hui
Some remarks on plectic motivic spaces and spectra
- DOI:
10.21136/cmj.2025.0328-24 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Po Hu;Daniel Kriz;Igor Kriz;Petr Somberg - 通讯作者:
Petr Somberg
Experimental Study on Scouring and Silting Deformation of Artificial Beach Under Storm Surge—Wave Coupling
- DOI:
10.1007/s13344-022-0005-z - 发表时间:
2022-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Tian-ting Sun;Po Hu;Jun-ning Pan;Yi-jun Hou;Dong-xue Mo;Deng-ting Wang - 通讯作者:
Deng-ting Wang
Qu Feng Xuan Bi Formula Alleviates Airway Inflammation and Guides Clinical Treatment by Improving Bronchial Immune Balance in the Asthma Model
祛风旋痹方通过改善哮喘模型支气管免疫平衡减轻气道炎症并指导临床治疗
- DOI:
10.1155/2021/6648834 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Po Hu;Suofang Shi;Li Liu;Shuomiao Yin;Lingfu Wang - 通讯作者:
Lingfu Wang
Po Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po Hu', 18)}}的其他基金
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
- 批准号:
2301520 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
String-related structures in homotopy theory
同伦理论中的弦相关结构
- 批准号:
0503814 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804394 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Fellowship Award
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric and algebraic aspects of Dehn surgery
Dehn 手术的几何和代数方面
- 批准号:
19K03502 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RUI: Algebraic, Differential-Geometric, and Computational Aspects of Darboux Transformations in Classical and Super Settings
RUI:经典和超级设置中达布变换的代数、微分几何和计算方面
- 批准号:
1708033 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
RUI: Algebraic and Geometric Aspects of Matroids, Polytopes, and Arrangements
RUI:拟阵、多面体和排列的代数和几何方面
- 批准号:
1600609 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic and Geometric aspects of Optimization
优化的代数和几何方面
- 批准号:
0712809 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant