Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
基本信息
- 批准号:2301520
- 负责人:
- 金额:$ 15.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic topology is the study of topological objects, such as topological spaces, through algebraic invariants that do not change when spaces are continuously deformed. Stable homotopy theory, a central part of algebraic topology, expands from the study of spaces to that of spectra, which are "stabilized spaces" that also represent generalized cohomology theories, or ways to assign algebraic invariants to spaces or other spectra. Equivariant stable homotopy theory further adds to spectra the actions of groups, which can be thought of as ways to map a spectrum to itself in composable and invertible ways. Equivariant stable homotopy theory has grown to be an important tool that offers insights into many deep questions in algebraic topology. The techniques of equivariant stable homotopy theory have also found applications in other areas of mathematics, including algebraic geometry and number theory. The broader impact aspect of the project includes mentoring of graduate and undergraduate students in mathematical research. The principal investigator (PI) will also continue outreach efforts by working to make her research area accessible to the public.This project includes a circle of ideas in equivariant stable homotopy theory. The PI will continue her ongoing work on equivariant complex cobordism spectra, in particular the extension of her previous calculation of the coefficients of such spectra for primary p-groups to more general groups. This has important implications to the study of equivariant formal group laws, another part of the project that the PI will pursue. The PI will also investigate applications to her recent calculation, together with her collaborators, of the equivariant Mackey Steenrod algebra for odd primes. Specifically, one such application the PI is pursing is the construction of odd-primary versions of the Real Brow-Peterson spectrum. A closely related question is the construction and understanding of equivariant elliptic and Barsotti-Tate cohomologies, as well as the formal group laws associated with these spectra. The PI will also continue her ongoing project, along with her collaborators, in the calculation of self-conjugate and double-real cobordism spectra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数拓扑学是通过当空间连续变形时不变的代数不变量来研究拓扑对象,例如拓扑空间。稳定同伦理论是代数拓扑学的核心部分,它从对空间的研究扩展到对谱的研究,谱是也代表广义上同调理论的“稳定空间”,或者是将代数不变量赋给空间或其他谱的方法。等变稳定同伦理论进一步将群的作用添加到谱中,这可以被认为是以可合成和可逆的方式将谱映射到其自身的方法。等变稳定同伦理论已成为研究代数拓扑学中许多深层次问题的重要工具。等变稳定同伦理论的技巧在数学的其他领域也有应用,包括代数几何和数论。该项目更广泛的影响方面包括在数学研究方面对研究生和本科生进行指导。首席研究员(PI)也将继续努力,努力使公众能够接触到她的研究领域。这个项目包括等变稳定同伦理论的一系列想法。PI将继续她正在进行的关于等变复余边谱的工作,特别是将她之前计算的准p-群的这种谱的系数推广到更一般的群。这对等变形式群律的研究具有重要意义,这是PI将进行的另一个项目的一部分。PI还将调查她和她的合作者最近对奇素数等变Mackey Steenrod代数的计算的应用。具体地说,PI正在追求的一个这样的应用是构造实Brow-Peterson谱的奇主版本。一个密切相关的问题是等变椭圆上同调和BarsottiTate上同调的构造和理解,以及与这些谱相关的形式群律。PI还将继续她正在进行的项目,与她的合作者一起,计算自共轭和双实协边光谱。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po Hu其他文献
The mechanism of EAP-EU combined impact on summer rainfall over North Asia
EAP-EU联合影响北亚夏季降水的机制
- DOI:
10.1007/s00704-020-03295-0 - 发表时间:
2020-06 - 期刊:
- 影响因子:3.4
- 作者:
Po Hu;Jianbo Cheng;Guolin Feng;Muhammad Mubashar Ahmad Dogar;Zhiqiang Gong - 通讯作者:
Zhiqiang Gong
LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK–eIF2α–ATF4–CHOP axis
LW-213 通过激活 PERK–eIF2α–ATF4–CHOP 轴诱导人皮肤 T 细胞淋巴瘤细胞凋亡
- DOI:
10.1038/s41401-020-0466-7 - 发表时间:
2020-08-03 - 期刊:
- 影响因子:8.400
- 作者:
Xiao-xuan Yu;Meng-yuan Zhu;Jia-rong Wang;Hui Li;Po Hu;Ying-jie Qing;Xiang-yuan Wang;Hong-zheng Wang;Zhan-yu Wang;Jing-yan Xu;Qing-long Guo;Hui Hui - 通讯作者:
Hui Hui
Some remarks on plectic motivic spaces and spectra
- DOI:
10.21136/cmj.2025.0328-24 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Po Hu;Daniel Kriz;Igor Kriz;Petr Somberg - 通讯作者:
Petr Somberg
Experimental Study on Scouring and Silting Deformation of Artificial Beach Under Storm Surge—Wave Coupling
- DOI:
10.1007/s13344-022-0005-z - 发表时间:
2022-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Tian-ting Sun;Po Hu;Jun-ning Pan;Yi-jun Hou;Dong-xue Mo;Deng-ting Wang - 通讯作者:
Deng-ting Wang
Qu Feng Xuan Bi Formula Alleviates Airway Inflammation and Guides Clinical Treatment by Improving Bronchial Immune Balance in the Asthma Model
祛风旋痹方通过改善哮喘模型支气管免疫平衡减轻气道炎症并指导临床治疗
- DOI:
10.1155/2021/6648834 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Po Hu;Suofang Shi;Li Liu;Shuomiao Yin;Lingfu Wang - 通讯作者:
Lingfu Wang
Po Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po Hu', 18)}}的其他基金
String-related structures in homotopy theory
同伦理论中的弦相关结构
- 批准号:
0503814 - 财政年份:2005
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
- 批准号:
0303505 - 财政年份:2002
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
- 批准号:
0204080 - 财政年份:2002
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804394 - 财政年份:1998
- 资助金额:
$ 15.38万 - 项目类别:
Fellowship Award
相似海外基金
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104420 - 财政年份:2021
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Classical, Motivic and Equivariant Stable Homotopy Groups of Spheres.
球面的经典、动机和等变稳定同伦群。
- 批准号:
2105462 - 财政年份:2021
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Equivariant and Motivic Deformations of Stable Homotopy Theory
稳定同伦理论的等变和动机变形
- 批准号:
2005476 - 财政年份:2020
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Motivic and Equivariant Stable Homotopy Groups
动机和等变稳定同伦群
- 批准号:
1904241 - 财政年份:2019
- 资助金额:
$ 15.38万 - 项目类别:
Continuing Grant
Computations in Stable and Unstable Equivariant Chromatic Homotopy
稳定和不稳定等变色同伦的计算
- 批准号:
1811189 - 财政年份:2018
- 资助金额:
$ 15.38万 - 项目类别:
Continuing Grant
RUI: Higher Structures in Stable, Equivariant, and Motivic Homotopy Theory
RUI:稳定、等变和动机同伦理论中的高级结构
- 批准号:
1709302 - 财政年份:2017
- 资助金额:
$ 15.38万 - 项目类别:
Continuing Grant
Equivariant and Chromatic Stable Homotopy Theory
等变和色稳定同伦理论
- 批准号:
1606623 - 财政年份:2016
- 资助金额:
$ 15.38万 - 项目类别:
Standard Grant
Algebraic Rational G-Equivariant Stable Homotopy Theory for Profinite Groups and Extensions of a Torus
有限群和环面扩张的代数有理G-等变稳定同伦理论
- 批准号:
EP/H026681/2 - 财政年份:2013
- 资助金额:
$ 15.38万 - 项目类别:
Fellowship