Equivariant motivic homotopy theory
等变动机同伦理论
基本信息
- 批准号:1104348
- 负责人:
- 金额:$ 10.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main part the investigator's proposed research is the application of equivariant methods in two closely related areas, that of topology and of algebraic geometry. One of the investigator's main ongoing projects (joint with I. Kriz and K. Ormsby) is to apply the machinery of stable homotopy theory, such as the Adams and Adams-Novikov spectral sequences, to Morel and Voevodsky's motivic homotopy theory. Another of the investigator's projects in motivic homotopy theory, also joint with I. Kriz and K. Ormsby, is the study of equivariant motivic stable homotopy theory, which in turn also leads to new information in the world of equivariant topology. Together with I. Kriz, the investigator has a project studying equivariant spectra in topology arising from the realizations of motivic spectra, such as the so-called topological hermitian cobordism spectrum. The groups acting on such spectra contain Z/2, and the actions incorporate a Real (or complex conjugation) action. As shown by the recent work of Hill, Hopkins and Ravenel in solving the Kervaire invariant 1 problem, these objects are highly interesting sources of new homotopy theoretical information. In addition, the investigator also has a project in understanding string topology, as well as operad actions and deformation theory in both algebra and topology. This aspect of the investigator's work closely related to J. Lurie's recent notion of non-abelian Poincare duality on manifolds.The overall theme of the investigator's research is in the interaction between two important areas of mathematics, that of algebraic topology and algebraic geometry. Algebraic topology can be thought of as "purely qualitative" geometry, where one is allowed to deform shapes or topological spaces, and associate to them certain algebraic and numerical invariants. On the other hand, algebraic geometry can be thought of as the study of certain much more rigid mathematical objects, built essentially from the solution sets of algebraic equations. Morel and Voevodsky have constructed a way of applying the methods of algebraic topology to the area of algebraic geometry, giving rise to a new field of mathematics, that of motivic homotopy theory. One of the investigator's projects (joint with I. Kriz and K. Ormsby) is to apply certain well-established machinery of algebraic topology to this world, which has the potential to answer long-standing questions. Another project is to gain an understanding of equivariant motivic homotopy theory, the goal of which is to shed light on structures in motivic homotopy theory by adding in the actions of groups to the story. In its turn, gaining an understanding of equivariant motivic homotopy theory will also lead to new information about objects in topology itself.
研究人员提出的主要研究内容是等变方法在拓扑学和代数几何这两个密切相关的领域中的应用。研究人员正在进行的主要项目之一(与I.Kriz和K.Ormsby合作)是将稳定同伦理论的机制,如Adams和Adams-Novikov谱序列,应用于Morel和Voevodsky的动机同伦理论。这位研究者与I.Kriz和K.Ormsby在动机同伦理论方面的另一个合作项目是等变动机稳定同伦理论的研究,这反过来也带来了等变拓扑界的新信息。与I.Kriz一起,这位研究者有一个项目,研究由Motivic谱的实现产生的拓扑学中的等变谱,例如所谓的拓扑厄米特余边谱。作用在这些光谱上的基团包含Z/2,并且这些作用结合了实数(或复共轭)作用。正如Hill、Hopkins和Ravenel最近在解决Kervaire不变量1问题时所做的工作所表明的那样,这些天体是新的同伦理论信息的非常有趣的来源。此外,研究人员还研究了弦拓扑学,以及代数和拓扑学中的算符作用和形变理论。研究人员的这方面工作与J.Lurie最近提出的流形上的非阿贝尔Poincare对偶概念密切相关。研究人员研究的总主题是两个重要数学领域--代数拓扑学和代数几何之间的相互作用。代数拓扑学可以被认为是“纯粹定性的”几何,它允许人们变形形状或拓扑空间,并将某些代数和数值不变量与它们联系在一起。另一方面,代数几何可以被认为是对某些更严格的数学对象的研究,这些对象基本上是从代数方程的解集建立起来的。Morel和Voevodsky构造了一种将代数拓扑的方法应用于代数几何领域的方法,从而产生了一个新的数学领域--动机同伦理论。研究人员的项目之一(与I.Kriz和K.Ormsby合作)是将某些公认的代数拓扑学机制应用于这个世界,这有可能回答长期存在的问题。另一个项目是了解等变动机同伦理论,其目的是通过在故事中加入群体的行动来阐明动机同伦理论中的结构。反过来,对等变基元同伦理论的理解也将导致关于拓扑学本身中对象的新信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po Hu其他文献
The mechanism of EAP-EU combined impact on summer rainfall over North Asia
EAP-EU联合影响北亚夏季降水的机制
- DOI:
10.1007/s00704-020-03295-0 - 发表时间:
2020-06 - 期刊:
- 影响因子:3.4
- 作者:
Po Hu;Jianbo Cheng;Guolin Feng;Muhammad Mubashar Ahmad Dogar;Zhiqiang Gong - 通讯作者:
Zhiqiang Gong
LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK–eIF2α–ATF4–CHOP axis
LW-213 通过激活 PERK–eIF2α–ATF4–CHOP 轴诱导人皮肤 T 细胞淋巴瘤细胞凋亡
- DOI:
10.1038/s41401-020-0466-7 - 发表时间:
2020-08-03 - 期刊:
- 影响因子:8.400
- 作者:
Xiao-xuan Yu;Meng-yuan Zhu;Jia-rong Wang;Hui Li;Po Hu;Ying-jie Qing;Xiang-yuan Wang;Hong-zheng Wang;Zhan-yu Wang;Jing-yan Xu;Qing-long Guo;Hui Hui - 通讯作者:
Hui Hui
Some remarks on plectic motivic spaces and spectra
- DOI:
10.21136/cmj.2025.0328-24 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:0.500
- 作者:
Po Hu;Daniel Kriz;Igor Kriz;Petr Somberg - 通讯作者:
Petr Somberg
Experimental Study on Scouring and Silting Deformation of Artificial Beach Under Storm Surge—Wave Coupling
- DOI:
10.1007/s13344-022-0005-z - 发表时间:
2022-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Tian-ting Sun;Po Hu;Jun-ning Pan;Yi-jun Hou;Dong-xue Mo;Deng-ting Wang - 通讯作者:
Deng-ting Wang
Qu Feng Xuan Bi Formula Alleviates Airway Inflammation and Guides Clinical Treatment by Improving Bronchial Immune Balance in the Asthma Model
祛风旋痹方通过改善哮喘模型支气管免疫平衡减轻气道炎症并指导临床治疗
- DOI:
10.1155/2021/6648834 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Po Hu;Suofang Shi;Li Liu;Shuomiao Yin;Lingfu Wang - 通讯作者:
Lingfu Wang
Po Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po Hu', 18)}}的其他基金
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
- 批准号:
2301520 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
String-related structures in homotopy theory
同伦理论中的弦相关结构
- 批准号:
0503814 - 财政年份:2005
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
- 批准号:
0303505 - 财政年份:2002
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Geometric Aspects of Algebraic Topology
代数拓扑的几何方面
- 批准号:
0204080 - 财政年份:2002
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804394 - 财政年份:1998
- 资助金额:
$ 10.85万 - 项目类别:
Fellowship Award
相似国自然基金
环面空间的上同调与motivic稳定同伦
- 批准号:12271183
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126309
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126354
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
同伦群的结构与计算
- 批准号:11801082
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Motivic稳定同伦与环面拓扑中R-S谱序列的研究
- 批准号:11871284
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Classical, Motivic and Equivariant Stable Homotopy Groups of Spheres.
球面的经典、动机和等变稳定同伦群。
- 批准号:
2105462 - 财政年份:2021
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Equivariant and Motivic Deformations of Stable Homotopy Theory
稳定同伦理论的等变和动机变形
- 批准号:
2005476 - 财政年份:2020
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Categorical Methods for Classical, Equivariant, and Motivic Homotopy Theory
经典、等变和动机同伦理论的分类方法
- 批准号:
1903429 - 财政年份:2019
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Motivic and Equivariant Stable Homotopy Groups
动机和等变稳定同伦群
- 批准号:
1904241 - 财政年份:2019
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Homotopy Theory in the Ecliptic: Chromatic, Equivariant, and Motivic Mathematics
黄道中的同伦理论:色数学、等变数学和本理数学
- 批准号:
1722545 - 财政年份:2017
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
RUI: Higher Structures in Stable, Equivariant, and Motivic Homotopy Theory
RUI:稳定、等变和动机同伦理论中的高级结构
- 批准号:
1709302 - 财政年份:2017
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Computational Motivic and Equivariant Homotopy Theory
计算动机和等变同伦理论
- 批准号:
1710379 - 财政年份:2017
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Conference on Equivariant and Motivic Homotopy Theory
等变和动机同伦理论会议
- 批准号:
1462793 - 财政年份:2015
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Workshop in Equivariant, Chromatic, and Motivic Homotopy Theory
等变、半音和基元同伦理论研讨会
- 批准号:
1261225 - 财政年份:2013
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Structural properties of equivariant and motivic stable homotopy categories
等变和动机稳定同伦范畴的结构性质
- 批准号:
203309416 - 财政年份:2011
- 资助金额:
$ 10.85万 - 项目类别:
Research Grants














{{item.name}}会员




