Molecular Engineering of Semiconducting Polymers for Emerging Organic Electronics

用于新兴有机电子的半导体聚合物的分子工程

基本信息

  • 批准号:
    RGPIN-2022-04428
  • 负责人:
  • 金额:
    $ 4.52万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Semiconducting Polymers (SPs) are a fascinating class of organic materials that have led to significant discoveries in recent decades. In addition to possessing excellent charge transport properties, SPs are synthetically versatile, offering a myriad of possibilities to fine-tune their optoelectronic, thermomechanical, and solid-state properties. Despite these unique features, the application of semiconducting polymers for the fabrication of next-generation electronics has been limited, largely due to their semicrystalline nature that limits molecular stretchability and solubility in common organic solvents. Therefore, common high-performance SPs generally possess high Young's modulus and low solubility in common organic solvents. Over the last funding cycle, our group has utilized innovative approaches to prepare and design new advanced semiconducting polymers, and has moved toward the establishment of new structure-property relationships in organic electronics. Our progress and the important findings revealed so far, however, are only the tip of the iceberg. The long-term objective of this research program is to develop a materials design "toolbox" for advanced semiconducting polymers with innovative properties, such as stretchability, self-healing and green processability, allowing for these new materials to become applicable for the fabrication of stretchable (bio)electronics. These tools will also provide new properties and functions for going beyond traditional organic electronics. Toward this goal, three main themes will be investigated. The first part of this research program will focus on the preparation of self-healing semiconducting covalent adaptable networks, the second part will be dedicated to the design and preparation of degradable and greener SPs, and the final part will develop a novel strategy to access high-performance SPs through the formation of polydiacetylenes. The thermomechanical properties, solubility, and processing methods of high-performance SPs are often under-explored in literature, making the establishment of a rational design strategy that can improve/enable these properties even more crucial. Throughout this research program, new materials will be evaluated through a myriad of multimodal characterization techniques to fully unravel and access new structure-property relationships in advanced semiconductors. Finally, the new materials and designs developed through this research program will be applied to electronic devices through the fabrication of organic field-effect transistors, allowing for direct connecting of the molecular design and materials properties with performance in organic electronics. With the rise of organic electronics, the achievement of the timely and important objectives of this research program not only transform current design paradigms for SPs and organic electronics but will also provide cutting-edge training for the next generation of highly skilled Canadian scientists.
半导体聚合物(SPS)是一类令人着迷的有机材料,近几十年来取得了重大发现。除了具有优异的电荷传输特性外,SP还具有多种综合用途,为微调其光电、热机械和固态特性提供了多种可能性。尽管有这些独特的特性,半导体聚合物在制造下一代电子产品方面的应用一直受到限制,这主要是因为它们的半晶性限制了分子在常见有机溶剂中的延伸性和溶解性。因此,普通的高性能SPS一般具有较高的杨氏模数和较低的在普通有机溶剂中的溶解度。在过去的资金周期中,我们的团队利用创新的方法来制备和设计新的先进半导体聚合物,并致力于在有机电子领域建立新的结构-性质关系。然而,到目前为止,我们的进展和公布的重要发现只是冰山一角。这项研究计划的长期目标是开发一种材料设计“工具箱”,用于具有创新性能的先进半导体聚合物,如可拉伸、自我修复和绿色加工,使这些新材料能够应用于可拉伸(生物)电子产品的制造。这些工具还将提供新的特性和功能,以超越传统的有机电子产品。为了实现这一目标,将调查三个主要主题。该研究计划的第一部分将专注于制备自愈性半导体共价自适应网络,第二部分将致力于设计和制备可降解和更绿色的SPS,最后一部分将开发一种通过形成聚二乙炔来获得高性能SPS的新策略。文献中对高性能SPS的热机械性能、溶解度和加工方法的研究往往不足,这使得建立合理的设计策略来改善/使这些性能变得更加关键。在整个研究计划中,将通过各种多模式表征技术对新材料进行评估,以充分揭示和获取先进半导体中的新结构-性能关系。最后,通过这项研究计划开发的新材料和设计将通过制造有机场效应晶体管应用于电子器件,使分子设计和材料特性与有机电子性能直接联系起来。随着有机电子技术的兴起,这一研究计划及时而重要的目标的实现不仅改变了目前的SPS和有机电子设计模式,还将为下一代高技能的加拿大科学家提供尖端培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RondeauGagné, Simon其他文献

RondeauGagné, Simon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RondeauGagné, Simon', 18)}}的其他基金

Preparation of New Conductive Plastics from Doped Conjugated Polymer Fillers
掺杂共轭聚合物填料制备新型导电塑料
  • 批准号:
    556292-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Alliance Grants
New Approaches Towards Highly Stretchable and Self-Healable Conjugated Polymers
开发高拉伸性和自修复共轭聚合物的新方法
  • 批准号:
    RGPIN-2017-06611
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
New Approaches Towards Highly Stretchable and Self-Healable Conjugated Polymers
开发高拉伸性和自修复共轭聚合物的新方法
  • 批准号:
    RGPIN-2017-06611
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic Force Microscopy and Nanomechanical Mapping Platform for Soft Materials
软材料原子力显微镜和纳米力学绘图平台
  • 批准号:
    RTI-2021-00267
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Research Tools and Instruments
Preparation of New Conductive Plastics from Doped Conjugated Polymer Fillers
掺杂共轭聚合物填料制备新型导电塑料
  • 批准号:
    556292-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Alliance Grants
LGBTQ+ STEM conference
LGBTQ STEM 会议
  • 批准号:
    545281-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Special Opportunities Fund
New Approaches Towards Highly Stretchable and Self-Healable Conjugated Polymers
开发高拉伸性和自修复共轭聚合物的新方法
  • 批准号:
    RGPIN-2017-06611
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Development of New Polymer Composites Incorporating Various Cannabinoid Derivatives
含有各种大麻素衍生物的新型聚合物复合材料的开发
  • 批准号:
    530200-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Engage Grants Program
New Approaches Towards Highly Stretchable and Self-Healable Conjugated Polymers
开发高拉伸性和自修复共轭聚合物的新方法
  • 批准号:
    RGPIN-2017-06611
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Connector event in chemistry, University of Windsor
温莎大学化学连接器活动
  • 批准号:
    522867-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Connect Grants Level 2

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mechanical reliability and strain engineering of semiconducting 2D materials
半导体二维材料的机械可靠性和应变工程
  • 批准号:
    577601-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Alliance Grants
Excellence in Research: First Principles Defect Engineering of Plasmonic Diluted Magnetic Semiconducting Oxide Nanocrystals
卓越研究:等离子体稀释磁性半导体氧化物纳米晶体的第一原理缺陷工程
  • 批准号:
    2013854
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Search for a semiconducting quasicrystal and its application for thermoelectric materials by band engineering
通过能带工程寻找半导体准晶及其在热电材料中的应用
  • 批准号:
    19J21779
  • 财政年份:
    2019
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel Crystal Engineering Strategies for High Performance Semiconducting Thienoacenes
高性能半导体噻吩并苯的新型晶体工程策略
  • 批准号:
    17K14478
  • 财政年份:
    2017
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Semiconducting Oligomer Lasers Developed via Crystal Engineering
通过晶体工程开发的半导体低聚物激光器
  • 批准号:
    22350082
  • 财政年份:
    2010
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Engineering the Morphology and Microstructure of Group III-V Compound Semiconducting Nanowires
合作研究:III-V族化合物半导体纳米线的形貌和微观结构工程设计
  • 批准号:
    0926178
  • 财政年份:
    2009
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Morphology and Microstructure of Group III-V Compound Semiconducting Nanowires
合作研究:III-V族化合物半导体纳米线的形貌和微观结构工程设计
  • 批准号:
    0926412
  • 财政年份:
    2009
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Presidential Young Investigators Award: Physics and Engineering of Superconductor and Semiconducting Devices
总统青年研究员奖:超导和半导体器件物理与工程
  • 批准号:
    8958405
  • 财政年份:
    1989
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing Grant
Combined Experimental and Theoretical Approach to Grain Boundary Engineering in Organic Semiconducting Crystals
有机半导体晶体晶界工程的实验与理论相结合的方法
  • 批准号:
    536757824
  • 财政年份:
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Research Grants
Fermi level engineering in (non)-degenerate semiconducting perovskite-type oxynitride photoabsorbers (A04)
(非)简并半导体钙钛矿型氮氧化物光吸收器中的费米能级工程(A04)
  • 批准号:
    513144825
  • 财政年份:
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了