Power-Aware Resource Management in Densely Packaged Distributed Real-Time Embedded Systems
密集封装分布式实时嵌入式系统中的功耗感知资源管理
基本信息
- 批准号:0509483
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On-board embedded systems, such as those found in avionics and flight control,shipboard computing, space shuttles, intelligent transport systems and instrumentations inmedical and emergency facilities and vehicles, face greatly increased computationalrequirements both in terms of computation load as well as stringent constraints on timingguarantees. Two important issues that concern designers are efficient task scheduling tomeet real-time constraints and the reduction of system-wide energy consumption forincreased reliability.Over 50% of failures in embedded systems are closely related to operating temperatures.These in turn are determined by the power consumption of the computational componentsof the system. This research seeks to develop peak power constrained scheduling methods to alleviate these reliability concerns. The project pursues the development of a peak power model to accurately describe the power constraints in a distributed embedded system, thereby allowing for a safe and effective use of the available computational resources during periods of high load. The uniqueness of this approach is its focus on distributed embedded systems with varying workloads. Power aware partitioning (PAP) schemes for hybrid architectures comprising processors and reconfigurable components, such as a Field Programmable Gate Arrays (FPGA), provide system designers with tuning capabilities for performance and real-time scheduling of system tasks. The project investigates the development of fast power-aware task partitioning algorithms in hybrid embedded systems.
机载嵌入式系统,如航空电子和飞行控制、舰船计算、航天飞机、智能交通系统以及医疗和急救设施和车辆中的仪器,在计算负荷和时间保证方面都面临着极大的计算要求。设计人员关注的两个重要问题是满足实时约束的高效任务调度和为提高可靠性而降低系统能耗。嵌入式系统中50%以上的故障与工作温度密切相关,而这些又由系统计算部件的功耗决定。本研究旨在开发峰值功率受限的调度方法,以缓解这些可靠性问题。该项目致力于开发峰值功率模型,以准确描述分布式嵌入式系统中的功率约束,从而允许在高负载期间安全和有效地使用可用的计算资源。这种方法的独特之处在于它专注于具有不同工作负载的分布式嵌入式系统。用于包括处理器和可重配置组件的混合体系结构的功率感知分区(PAP)方案,例如现场可编程门阵列(FPGA),为系统设计者提供了针对系统任务的性能和实时调度的调整能力。该项目研究了混合嵌入式系统中快速节能任务划分算法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rabi Mahapatra其他文献
An intelligent 2-D chart method with auto-detection for weak Quasar blind TDD estimation in deep space DOR measurement
深空 DOR 测量中弱类星体盲 TDD 估计的自动检测智能二维图方法
- DOI:
10.1109/taes.2022.3169731 - 发表时间:
2022 - 期刊:
- 影响因子:4.4
- 作者:
Lanhua Xia;Jifei Tang;Jun Wu;Yang Chen;Rabi Mahapatra - 通讯作者:
Rabi Mahapatra
Rabi Mahapatra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rabi Mahapatra', 18)}}的其他基金
Collaborative Research: CCLI (Exploratory): Introduction of Nanoelectronics Courses in Undergraduate Computer Science and Computer Engineering Curricula
合作研究:CCLI(探索性):本科计算机科学和计算机工程课程中纳米电子学课程的介绍
- 批准号:
0942387 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring Semantic Routed Network for Cyber Infrastructures
探索网络基础设施的语义路由网络
- 批准号:
0823020 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Methodology for Early Power-Performance Estimation of Nano-CMOS Digital Systems
合作研究:纳米 CMOS 数字系统早期功耗性能评估的综合方法
- 批准号:
0702744 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SOTERIA: Satisfaction and Risk-aware Dynamic Resource Orchestration in Public Safety Systems
合作研究:SOTERIA:公共安全系统中的满意度和风险意识动态资源编排
- 批准号:
2319994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SOTERIA: Satisfaction and Risk-aware Dynamic Resource Orchestration in Public Safety Systems
合作研究:SOTERIA:公共安全系统中的满意度和风险意识动态资源编排
- 批准号:
2319995 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CIF: Small: Risk-Aware Resource Allocation for Robust Wireless Autonomy
CIF:小型:具有风险意识的资源分配,实现强大的无线自治
- 批准号:
2242215 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
ERI: Resource-Aware Single-Photon Image Sensors
ERI:资源感知单光子图像传感器
- 批准号:
2138471 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
User-centric and context-aware resource management in wireless sensor networks for the Internet of Things
物联网无线传感器网络中以用户为中心和上下文感知的资源管理
- 批准号:
RGPIN-2017-06968 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Safe, Privacy-Aware, and Resource-Efficient Control Framework for Cyber-Physical Systems
安全、隐私意识和资源高效的网络物理系统控制框架
- 批准号:
22KK0155 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Long-Term and Adaptive Resource-Aware Autonomous Navigation Planning for Solar-Powered Rovers
太阳能漫游车的长期自适应资源感知自主导航规划
- 批准号:
547548-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interference-aware Communication and Computation Resource Management for Artificial Intelligence Empowered 6G Fog Radio Access Network.
人工智能赋能的 6G 雾无线接入网络的干扰感知通信和计算资源管理。
- 批准号:
557183-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
SBIR Phase I: A Hardware-Aware AutoML Platform for Resource-Constrained Devices
SBIR 第一阶段:适用于资源受限设备的硬件感知 AutoML 平台
- 批准号:
2136679 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




